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Abstract— duplicated using combinations of texture maps and shaders, and
We present a system for painting how the appearance of an ob- in fact, the rendering system is amenable to a hardware imple-

ject changes under different lighting and viewing conditions. The hentation. The advantage of this approach is, we believe, the
user paints what the object should look like under different light- direct fit

ing conditions (dark, partially dark, fully lit, etc) and (optionally) Irec nes; orit, . . ) ) o
different viewing angles. The system renders the object under new ~ We begin by putting this approach in context with existing
lighting conditions and a new viewing angle by combining these work (Section Il). We next discuss the system as seen from the

paintings. We also provide a technique for constructing texture user’s point of view (Section Ill). The implementation section
maps directly from the user's paintings. is broken into two pieces; the first describes how we use the
artist’s paintings as texture maps (Section IV-A). Next, we de-
fine the rendering process (Section IV-D). We close with results
and conclusions.

In traditional 2D media an artist learns how to represent 3D
forms on a 2D canvas using a combination of color, shading, 1. PREVIOUS WORK

and texture. Unlike photography, artists are free to render theThis work continues the concept of using warm and cool col-
world any way they like, whether it is physically “accurate” or

: - org [7] or painterly color models [18] to shade an object. We
Bgti.t They use the real world as a guide, but are not ConStra'ncecJarnbine this with 3D painting [8], [19], [1] to let the user paint

both the texture and the shade effects at the same time.

In computer graphics, the artist controls the rendering pro- ) . i )
2 . Several techniques exist for automatically shading models
cess by changing lights, materials, textures, and shaders. This : .
: .~ - using common 2D techniques such as hatching [20], [17], [10],
process lies somewhere between photography and painting; the : ,
. - 2’procedural pen-and-ink textures [21], and cartoon shading [11].
artist has a great deal of indirect control over the way obje

reflect light, but nadirectcontrol of the final image. 'l['ge first is to maintain constant shading tones and stroke thick-

In this paper we describe a system that allows an artist o . . g
e , . nesses as the model is viewed from different distances. This is
paint” a 3D scene and what it should look under different . X e .,
S S . o achieved by creating a set of “artistic mip-maps” [13]. Each
lighting and viewing conditions. These paintings serve as an . . .
: o er of the mip-map contains all the strokes of the previ-
alternative method for specifying textures, shaders, and mate-~ . . oo .
ol.ls mip-map. The second problem is maintaining consistent
r

I. INTRODUCTION

ere are two primary challenges in stroke-based techniques.

rial properties. The goal is to let the artist use their trad|t|oq<'§1 okes as the desired shading value changes: again, this is

2D skills in the 3D environment, an idea pioneered by 3D paint,, . : - o
- - chieved by adding strokes to existing strokes, creating increas-
systems [8]. The original 3D painting systems were used {0 .
: . N ) o ngly darker tones. Together, these stroke images form a 2D
specify texture maps in an intuitive way; we extend this idea 1 N o S
o Spread sheet”, where moving in one direction changes the per-
the specification of shaders.

The artist begins by painting what the object should look Iik%i'rvgf p'g:gi%’ magg etlhg. CSLTD?; Sdl(/e\:/gt:; o??{lrjwissts“;grre:]c? Sr;]térgt"
as if it were unlit,i.e., completely in shadow. They next paintStructure 0 store our paintings (éee Figure 1)
what the object should look like if it were fully lit. At this point, In the non-photorealistic community there is’ a growing body
we have enough information to render the object, blending fro(g? stroke-basedendering systems that are examining what it
the_ "dark” painting to the "light” painting as the shading on th?neans to translate the concept of “brush stroke” to a 3D model.
object chgnges. - ... Early work let the user specify the model, the strokes, and how
The artistis then free.to add more paintings. These _palntlx% strokes should be applied to the rendering [14]. Harold [3]
may show Wh".ﬂ the objept looks like Wheq partially lit, wh as a system that directly captured the user’s drawings and
it should look like when viewed from a particular angle, und laced them in a 3D world. Recent work [12] has combined
particular lighting conditions, or from far away. A Whimsical[

le of deri ing th i is sh in Fi he automatic shading models with an interactive system for
€xample of a rendering using three paintings 1S shown in Igbecifying the sample strokes and where they should go. We

ure 1. - . . 2,
. . . . differ from this approach in that the user specifies the tone and
The system is designed to be user-intensive, under the ﬁﬁ:b bp P

tion that th i killed artist and h foul texture together.
sumption that the user is a skilled artist and has a particular goahy, o\ 's peep Canvas [4] was one of the first systems to con-

in mind. The effects that are created using the system could\;éqt an artist's 2D painting to 3D. Every stroke the artist made
C. Grimm is a professor at Washington University in St. Louis, USA (emaiv.vas “attached” to a 3D element 'n the scene. When the cam-
cmg@cs.wustl.edu) era moved, the strokes were re-oriented and scaled to match the



Fig. 1. An example using three shading values. The three paintings for the current camera view are shown in the upper left, a bump map in the upper right.
Bottom row left: The intensity values on the object. Bottom row right: Using the three paintings to build a texture map by blending according to the intensity
values. The dark painting is assigned the value 0, the lightest painting the value 1. From left to right we set the middle painting’s value at 0.5, 0.9, and 0.95.

new viewpoint. When the viewpoint changed sufficiently, théhe results. We ameliorate this somewhat by copying data from
artist would paint the scene from this new viewpoint. We adopkisting paintings to new views before the user begins painting.
this notion of painting a series of viewpoints, but interpolate The system has two windows, a 3D one and a 2D one. In
and blend in the texture map and not the strokes themselvesthe 3D window the user can change the camera viewpoint and
3D painting requires a texture map, and a way to “reach” elights, see the results of one painting or a group of them, or what
ery point on the object with the paintbrush. A survey of the cupart of the object is currently un-painted. In the 2D window the
rent approaches and problems can be found in a technical repgir can page through the existing paintings, and add new shade
by Low [15]. If a model has an existing texture map then wealues or mip-map levels.
can use that. Takeo [9] introduced a method for creating a texEach painting consists of a set of images, the camera that was
ture map “on the fly” by locally flattening out the mesh into thgised to create those image’s viewpoint, a set of shade values, a
plane. This works well for simple non-occluding meshes, buiaterial shinyness, and an optional bump map. Each image
becomes somewhat difficult for objects with handles. Lapp@é the set has a shade value and a mip-map level; the set of
textures [16] provide a method for locally flattening out piecggages forms an array indexed by shade and mip-map level (see
of the mesh and texture mapping the pieces. One problem Witiure 1). To create a painting, the user first picks the camera
using an existing texture map is that the user’s paintings need;{ewpoint using the 3D window. In the 2D window they then
be resampled into the texture maps; if the texture map resolutigime the painting and pick a shade value for the image. They
varies much from the sampled image this can create artifagigin then optionally add new shade values and mip-map levels
For that reason, we introduce a texture mapping method thg@hich in turn creates more images).
uses the paintings directly and can cope with §elf-0cclusi0ns. We classify paintings into three classes; base-coat, view-
~ View-dependent texture maps first arose in the context @épendent, and light-dependent. The base-coat paintings cover
image-based rendering [5]. In this case, photographs gg visible part of the object and serve as the “base” texture.
ahgned with the 3_D model automatically. As the camera viewrhe view-dependent paintings only appear for a limited range
point changes, different sets of photographs are chosen @idjew angles (see Figure 3). The user has two sliders that
combined. We use the weighting scheme outlined in Buehlggntro| the view angle ranges; the first controls the total visi-

et. al. [2] to combine our paintings. This approach weighife angular distance, the second controls how fast the painting
the blends based on how close rays are in angular distance g{ks out.

resolution (distance to the camera). The light-dependent paintings are tied to the position of a
particular light in the scene instead of the camera. The user
[1l. USER INTERFACE has three sliders that control the angles over which the light-

In this section we describe the system from the user’s poiependent painting appears. The first two are identical to the
of view, leaving the details of the implementation for later sesiew-dependent sliders; the last one lets the user fade the paint-
tions. ing out as the light moves away from the object.

When developing our system we chose to have the user usé typical painting session begins with the user picking some
an external program, such as Paiffterto create the images number of base-coat views, typically 4-6. For each base-coat
(or, alternatively, they can scan hand-painted images in). Thigw the user specifies two shade values, one dark and one light,
has the advantage that the user can use their favorite methgdch creates corresponding dark and light images. These im-
for creating the 2D images, but it has the disadvantage of iages initially contain a grey-scale rendering of the model. The
troducing an intermediate step between painting and viewinger paints the images, then reads them back in and applies



IV. IMPLEMENTATION

In this section we provide implementation details for the tex-
ture maps (Section IV-A) and the rendering (Section IV-D). The
texture map section describes how to use the painting images di-
rectly as texture maps. There are two issues here; first, how to
cope with self-occluding models, and second, how to combine
the paintings where they overlap on the object.

The rendering section defines how the paintings are shaded
and then combined into a final rendering. We use image-based
rendering techniques, based on the ones in Buehler et. al. [2], to
combine the paintings. Although we use our texture mapping
technique in this discussion, the methods themselves apply to
any texture map representation.

Fig. 2.  Splitting the object into two paintings to avoid the self-occlusions. o
Left: The first layer contains the handle and the body of the vase, except for the Texture maps from paintings

part under the handle. Right: the part of the vase body that was covered by thel_ - .
handle. The uncovered portion of the mesh is shown in (smooth) grey. o create a texture map from a painting we project the ver-

tices of the faces onto the image and use the projected locations
as texture coordinates. Our algorithm addresses the two major
problems with this approach, occlusion and shared faces.

For any reasonably complicated model there will be portions
of the model that are occluded. This leads to two problems.
First, if two faces map to the same pixel then they both get col-
ored with that pixel's color. This is desirable for two neighbor-
ing faces but not so for two overlapping faces. Second, it may
be difficult to find a view where the occluded faces are visible.

We approach the problem of occlusion by breaking the
model’'s mesh into layers (see Figure 2). As a layer of the mesh
is painted (with one or more paintings) we “peel off” that layer

Fig. 3. Left: The vase with just the base-coat. Middle: The angle at which tlgo expose the next set of faces to be painted. We also ensure that

side view-dependent painting begins to appear. Right: The side view-dependﬁﬁ occluded faces (even partially occluded ones) are not used

painting fully visible. in a painting. To make painting simpler, and to avoid texture
blending artifacts, we enforce a pixel wide halo around faces
that occlude other ones.

them to the model. The user then moves to the next painting

viewpoint and writes out images that show the uncovered p®- Data structures

tion of the model as a grey scale image, and the covered portior?:or each painting we store the layer, the list of faces associ-

showing the_dg_rk (or light) prc_ewous painting. ated with that painting, texture map coordinates for the vertices,
Once the initial base-coat is created the user has several gjr camera, and an alpha mask. The user provides the layer
tions: number, and the remaining data is calculated automatically.
« Produce mip-map levels of the current paintings and edit
them to create effects based on viewing distance a@d Algorithms

screen size. _ . 1) Faces for a painting: We start with the set of faces not
« Add more shade levels to control the dark-to-light transﬁssigned to a higher level. We run a modified two-pass scan-
tions.

) o _line algorithm to determine which faces are visible, which are

« Add one or more view-dependent paintings (each of whighycj,ded, and to calculate the point and normal for each pixel.
contains one or more shade levels). In the first pass we perform the standard scan-line algorithm,

« Add one or more light-dependent paintings. keeping track of the points and normals, and which face they

« Adjust the shinyness parameter. This is equivalent to theme from. Any face which falls across the edge of the image
traditional shinyness parameter and controls how sharp e, back-facing is eliminated at this stage.

highlights are. o . N In the second pass we increase the size of the polygon by half
« Add abump map. This is also equivalent to the traditiong| pixe| in all directions and keep track of all of the faces that
bump map and is used in the lighting calculation to adjugiap into each pixel, sorted by depth. For each pixel covered
the surface normals of the texture map. by more than two faces we look for possible occlusions. A face
If the object is self-occluding then the user has the option ¢fis occluded if there is a face that is closer ang is not a
separating the object into pieces and painting each of the pienefghbor off in the mesh.
with two or more paintings (see Figure 2). This is discussed inTo determine iff andg are neighbors we look for a path of
more detail in the texture section. adjacent face$ f, } that connecif to g such that every face in



{fa} maps to the current pixel. Usuallyandg will either be the shaded texture map by finding the intensity value at each
adjacent or widely separated, but it is possible for several smaitkel and interpolating between the images that bracket that in-
faces to map to a single pixel. tensity value. All of the paintings are calculated in this manner;
If the mesh has intersecting polygons then the above aldor the light-dependent paintings that depend on specularity we
rithm will end up throwing both polygons out. As an alternaenly use the specular component of the lighting calculation to
tive, we can sort the faces by their depth order (essentially tletermine the intensity.
Painter’s [6] algorithm) and perform occlusion testing on this The view-dependent and light-dependent paintings over-ride
ordered list. In this caseny face that overlaps and is not athe base-coat paintings. We first calculate the percentage of
neighbor is thrown out. each additional painting we wish to include; these numbers
2) Assigning faces to layersWe need to assign each faceare derived from the user-specified maximum angle and fall-
to a primary texture; this is used at rendering time to ensuoff. We then normalize the additional contributions, using the
that there are no opacity gaps. We also use this algorithmhase-coat if the sum of the contributions is less than one.
determine which layer a face should belong to. We begin with 1) Shading the texture mapsiVe calculate how much light
the set of faces that map to any layer zero painting. We assitpe object should reflect, then use that number to linearly
the face to the painting where the face is most forward-facinglend between the two bracketing shade values, creating a new
We then repeat with the set of faces covered by the second laysihaded” texture map. This calculation is performed on a per-
but not the first. We continue until all of the faces are covereqixel basis.
The above algorithms are interleaved with the user’s creationSuppose we haw¥' texture maps,; at shade values < d; <
of paintings. Usually the user will paint several views that covér, with d; < d;11. For each pixel in the texture map we have
the object, assign them to a single layer, then “strip off” thos#ored a poinp and a normah. The color of the pixel in the
faces to begin painting the next layer. For example, layer zesbaded texture map is found by first calculating the shade value
for the vase was made first with six paintings that covered theait the pixel using the standard lighting calculation fak(the
top, bottom, and four sides. The scan-line algorithm left gapslivok vector, I,,, 14, Is the ambient, diffuse, and specular light
the areas behind the handles and around the lid. After paintivejues,d the distance to the light sourcéthe vector to the
these six views, the user ran the face assignment algorithmlight source):
clicking a button. They were then able to see just the faces left.
They picked six more views, angled through the handleoneach ¢ — 1, + B S Z(I‘m A+ I (r-1)°)
side and top and bottom, to fill in the back side of the handles, co + c1d + cad?

the vase body, and the remaining top and bottom of the lid. Nyt e use that shade value to determine the two bracketing
3) Combining paintings: Faces will usually be covered by oy re maps and how much of each to take:
one or more paintings and we want to blend smoothly from

one painting to the next. This is essentially an image-based

rendering problem; we want to take the paintings that best cover i st di <s<di (1)

a face and combine them based on the camera angle relative divy — s s —d,

to that face. At this stage we currently blend only on camera ts(z,y) d_l+ d_ti + 7. zd tit1 2)
angle, and not on resolution, because the paintings are usually R R

at similar resolutions. We can either blend each of the color channels independently,

For each pixel in each face in each painting we store the pef-average thé?GB values ins and use the same blend value
centage of that painting to use in the alpha mask. We th&jt all channels.
use OpenGL's blend routines to combine the results. To cal-We can easily incorporate bump mapping [6] and material
culate the percentages we first find the angleshbetween the shininess into this calculation. Since we are storing the per-
face normal at that pixel and the ray from camerhrough pixel normals already, we can simply perturb these normals us-
that pixel. (We linearly interpolate the vertex normals acrossg the bump map and store the results. Material shininess is
the face.) Letw,, be the maximum angle we wish to allowcaptured by the parametein the lighting equation.
(slightly less thar909°€). We use a maximum angle rather than To create the point and normal information we use the stan-
the largest angle because we may only have two paintings. Td#d scan-line [6] algorithm and store the results in two images.

un-normalized weights are then: The maximum amount of data storage needed for the base coat
1 o (including the bump map and “scratch” texture space for the
w; = —(1——2) blended texture) i$N + 4)(W H), whereW, H are the width
@i Qm and height of the texture map for the entire object.

2) View-dependent mapsview-dependent (VD) maps fade
in and out based on the current viewing direction. Like the base
coat, each VD map has one or more paintings at different shade
values and point and normal information for those paintings.
_ The final, shaded VD texture map is calculated by blending be-
D. Rendering tween the paintings on a per-pixel basis. Unlike the base coat,
In the rendering step we create a “shaded” texture map feach VD map typically covers only a subset of the model (since
each painting and combine the results together. We calcul#itere is no point in painting parts of the model that will not be

We only use cameras whetie < «,,. To hormalize, we divide
by the sum of all the weights. H, = 0 for some camera, then
we only use that camera.



seen). To control the fade we weight the texture map’s contribpaintings. For the plant we did not do any occlusion culling; all

tion by a valuew, that depends on the current viewing directionf the faces map to one of the paintings.

(see Eq 3). Rendering time for the scenes was between 1 and 5 seconds
Each VD map has an associated viewing direction, repres a 2GHz Pentium processor.

sented by arye point p. and anat pointp,. Theat point

lies along the look vector and in a plane containing the model. VI. CONCLUSIONS

i A )
Given a neveye pointp;, we can calculate, as follows: We have presented a system for painting lighting and view-

ing effects that is a simple extension to existing texturing and

Pe — PDa Pl — pa lighting techniques. The approach is suitable for hardware ac-
d = . € (3) . . L
Ipe — pall  [1P. — pall celeration. We also provide a method for building texture maps
0 ¢ d<d directly from user’s paintings.
Wy = { (d = d)/(1 = d))f d N 0’” 4) The system is currently being used by an artist with no com-
m m puter science background. The artist is learning to use 3DS

where0 < d,, < 1is the cut-off angle specified by the useiMaX in addition to using in-house software. Unfortunately the
and1 < f 2 ~ is the speed of the fall-off, also SpeCifie(]artiSt has no experience with traditional 3D painting systems,

by the user. This is essentially a camera angle penalty [2]. T%%) he cannot make any comparisons in that area. He does have

equation ignores the viewing distance (the appropriate mip-m X tp say about the pamtmg system versus the materials and
level will be selected by OpenGL) and does not take into at- ading syste_m (_’f 3DS Max: .
count where the object is in the field of view. | am deS|gn|ng both the dark and light textures and

3) Light-dependent mapsLight-dependent (LD) maps are the compu',[er is putting them togetherfor me. In 3DS
nearly identical to VD maps, except for the calculationf Max | don't have that same direct control - | may
Instead of storing areye point and anat point we store be able to import a texture, but often end up spend-
the sourcep, and directionu, of the associated light source. N9 hours tweaking lighting and r'naterla! properties to
d,, and f control the rate of angular fall-off, as in the view-  [Ind the dark and light images I'm looking for. This

dependent mapsa, controls the distance at which the LD map IS @ much simpler system to learn for someone com-
ing from traditional media - 3DS Max is very power-

falls off: : ]
ful, and offers so many tools, but it doesn't let tradi-
tionally trained people take advantage of their learned
dy = wvg-v) (5) skills.
_ / We believe that “painting” provides a viable alternative to
da = |lps = PLll/(mo) (6) PG - . -
specifying lighting and viewing effects using traditional mate-
0 dy < dm rials and shaders, especially for artists who are transitioning
Qv = 0 da < mo () from traditional media to 3D computer graphics.
(1 —dg)((d—dm)/(1 —dy))’ otherwise
4) Image-space sizeWe use OpenGL's mip-mapping rou- REFERENCES
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Fig. 4. The entire still life. Each object was painted individually with between 8 and 12 paintings. Top row: Intensity values. Bottom row: Rendered images.

Fig. 5. Painting plants. Shown are example “dark” and “light” paintings for the table, pot, and plant. The images on the far left are the alpha masks for those

paintings. On the right is two frames from an animation.
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