
Painting Objects with View-dependent Effects

Cindy M. Grimm, Michael Kowalski

Washington Univ. in St. Louis∗

Abstract

We present a system for painting on an object in a view-dependent
way. The user creates paintings of the object from various camera
positions to produce a texture map which changes depending upon
the view direction. The paintings are blended on the object, as op-
posed to blending the paintings themselves, to ensure that novel
views are correctly interpolated. This also produces self-contained
models which can then be animated. A painting serves either as
a base-coat (a layer which does not change with camera direction)
or is blended in depending upon the camera position. If just the
basecoat is painted, this system is equivalent to creating a texture
map by painting on the object.

There are two parts to the system, a user interface and an inter-
nal representation suitable for blending together the paintings on
the object. The internal representation is also designed to trade-off
speed for accuracy as needed.

Potential uses of this system are artistically created models with
control over appearance based on the viewing direction and depth.

Keywords: texture mapping

1 Introduction

In this paper we present a system for painting an object in a view-
dependent way. The idea of painting directly on an object in order
to create its texture map was first introduced by Hanrahan and Hae-
berli in [Hanrahan and Haeberli August 1990] and is now widely
available in commercial systems. We expand on this idea to let the
user also paint effects which come and go depending upon the cam-
era orientation and depth. A simple example is shown in Figure 1,
where the object “winks” as the camera moves around the object,
and smiles as the camera pulls back.

The purpose of our system is to provide artists with tools to in-
crease their control over the “look” of an object. Currently, effects
based on camera position are constructed indirectly. For example,
to create a flash off of an object at a certain camera orientation the
artist might place a directional light such that its reflection off the
object occurs at that orientation. If the object is moved or its re-
flectance properties changed, the flash will change or disappear al-
together. In our system, however, the user would simply “paint” the
flash in at the given camera orientation.

∗email:cmg@cs.wustl.edu

View-dependent textures also add interesting behaviour to an ob-
ject without altering its geometry. This behaviour is under the con-
trol of the artist, allowing them to focus the attention and add visual
detail where needed without cluttering up the scene. For example,
adding a complex visual texture to an object makes it more inter-
esting but can be excessive, especially when that object is not the
center of attention in a scene. One approach traditional artists use
in this case is to “fade out” the texture on parts of the object that
do not face the viewer or when the object is far away in a scene.
View-dependent textures allow the artist to create a complex, con-
sistent textureand specify how much of that texture is visible from
a given angle (see Figure 10).

The notion of an object’s visual properties changing with the
camera position was inspired by image-based rendering. Unlike
image-based rendering, however, we are not interested in capturing
lighting changes but instead allow the user to create artistic effects
that are determined by camera location.

A texture map is not sufficient for capturing view-dependent ef-
fects, nor is blending the paintings themselves the correct way to
perform the interpolation. Blending the paintings will produce in-
correct results especially in the presence of self-occlusion. Since
we have the actual geometry of the object, we can blend on the
surface of the object. This lets us establish exact pixel to pixel
correspondences between the paintings. Blending on the surface
requires the introduction of a data structure defined on the surface
which is suitable for interpolation.

In addition to defining a method for blending on the surface we
also demonstrate an interface for painting the object. This inter-
face is concerned with providing feedback, creating and deleting
paintings, and controlling the blending of the paintings. We do not
provide an interface for creating the actual images; instead, we sup-
port importing and exporting of images and let the user use their
favorite painting program (or scanner) to create the images for the
paintings.

The goal of the system is to retain fidelity to the user’s paintings
while still providing interactive feedback. To allow this, the resolu-
tion of the interpolation data structure (and the texture maps) can be
scaled up and down, trading fidelity for speed during construction.

We first discuss previous and related work (Section 2). In Sec-
tion 3 we introduce concepts which are used throughout the paper.
This is followed by a description of the system from the user’s point
of view (Section 4). Section 5 describes the data format and how it
is initialized from the user-supplied data. Finally, we close with a
results section.

2 Related work

This work is an extension of ideas presented in [Hanrahan and Hae-
berli August 1990], whose key idea was to hide the parameteriza-
tion of the texture map from the user by letting the user paint di-
rectly on the object.

The view-dependent portion of this work is closely related to
image-based rendering, where different views are interpolated to
simulate changing light effects. There are several image-based ren-
dering papers which incorporate knowledge of the object to im-
prove image interpolation [Debevec et al. June 1998][Pulli et al.

The base-coat paintings

The view-dependent
paintings

Changing camera angle

Changing depth

4 of 6 base-coat camera angles

Figure 1: A face which “winks” as the camera moves from left to right or up and down. The mouth opens as the camera is pulled back. All
images are shown half size.

June 1997] [Wood et al. July 2000]. Like these papers, we inter-
polate on the object; however, unlike the first two papers, we store
the interpolation data on the object. The paper [Oliveira et al. July
2000] changes the texture map of the object based on viewing di-
rection to correct for distortion. With this technique a brick-wall
texture will appear 3D. None of the image-based rendering papers
are concerned with changes that happen when the camera moves
closer or further away from the object. For these types of effects
we turn to non-photorealistic rendering.

One of the first papers to indirectly introduce the concept of
depth dependent effects was [Winkenbach and Salesin July 1994]
with the concept being refined in [Kowalski et al. August 1999]. In
these papers, the density of the strokes on the surface was deter-
mined by the camera’s proximity to the object and the image size.
A similar notion of depth for procedural textures was introduced
in [Perlin and Velho August 1995]. We use a notion similar to the
ones described above to allow the user to paint effects that depend
upon the number of pixels the object occupies.

There are many papers which allow the user to adjust for dis-
tortion in the texture map, for example [Maillot et al. August
1993] [Arad 1997]. Other techniques provide a texture map for
an object which does not have a natural parameterization [Buck
et al. July 2000] [Neyret and Cani August 1999] [Bloomenthal and
Wyvill March 1990]. In [Hutchinson et al. August 1996], the user
draws 2D planar graphs into the domain of the surfaces. These
systems are all useful for creating texture maps but do not create
view-dependent ones.

3 Preliminaries

Before discussing the user interface and implementation in detail,
we first define two concepts which will be used throughout the pa-
per. The first concept is called acell, and is used to divide up the
surface into discrete regions. The second concept we define is a
version of depth which depends upon both the camera distance and
the image size.

A note on terminology: The termpaintingwill be used through-
out the paper to encapsulate the camera position, image size, and
actual image plus an alpha mask. In image-based rendering litera-

ture this combination is usually referred to as a “view”. Internally
we use the alpha channel of the image to determine what part of
the image is actually used in the painting (the mask) but from an
interface point of view the mask is read and written separately as a
grey scale image.

3.1 Division of the surface into cells

Informally, a cell is just a portion of the surface. Alayerof cells is a
collections of cells such that every point on the surface is in exactly
one cell. We construct several layers of cells so that they form a
hierarchy,i.e., each cell in layeri is the union of some of the cells
in layeri +1. An example of layers zero through four of a spherical
surface can be seen in Figure 2.

More formally, we require that the surface be partitionable into
relatively evenly sized pieces. By partitioned, we mean that each
point on the surface belongs to exactly one cell, where each cell
is a mapping from a portion of the surface to a disk inℜ2. This
mapping must be 1-1 and onto. Ideally, the surface areas of the
cells should be roughly equal. Similarly, their domains (the disks
in ℜ2) should be the same size1. Otherwise, the resolution of the
surface will vary. The collection of cells is called a layer. We also
place restrictions on the layers, namely that they be hierarchical.
The simplest way to achieve this is to define the lowest layer of
cells, layer 0, and produce the next layer by subdividing the cells of
layer 0. This produces a nested set of layers.

To produce the meshes in Figure 2 we make a mesh for each layer
with one face per cell. The vertices are located on the corresponding
cell corner on the surface. Note that the lowest layer mesh will be,
in general, a poor fit with the original surface.

We call these meshesid meshesbecause we use them to identify
which pixel in an image belongs to which cell [Recker et al. 1990].
We explain how to do this in detail in Section 5.1.1.

1It is possible to account for varying surface area size by adjusting the
size of the disks, but this introduces additional complexity.

Level 0 Level 4

Figure 2: Meshes constructed for each layer of cells. The level zero
mesh has six cells, one for each face. The cells are split into four to
produce the next layer.

3.1.1 Cell layers for sample surface types

For our implementation we usedmanifold surfaces[Grimm and
Hughes August 1995]. The zero layer of cells is created by mak-
ing a single cell for every vertex chart. We subdivide these cells
by splitting each cell into four (see Figure 2). For a given surface
we tend to produce a maximum of 3 to 6 layers of cells, depending
upon the desired resolution.

A similar scheme can be used for Catmull-Clark subdivision sur-
faces by using the quads produced by the first level of subdivision
as the layer zero cells. For Loop subdivision surfaces the cells must
be split using a triangular cell division scheme. Spline surfaces can
use the individual patches as the layer 0 cells.

For arbitrary meshes, the techniques described in [Buck et al.
July 2000] or [Neyret and Cani August 1999] could be modified to
produce the layer 0 cells.

3.2 Depth dependent effects

In this section we discuss the concept of “depth” in our application.
The usual notion of depth is the distance from the camera to the
object. In the real world, this corresponds to the object taking up
more (or less) of our visual field, with a corresponding gain (or loss)
of detail. In our case, the viewer (the OpenGL window) can change
the visual resolution of the object in two ways; either by changing
the camera distance or by changing the size of the window. To
account for this, we use a depth metric which corresponds to the
number of pixels the object occupies.

To compute the depth we count the average number of pixels per
cell for the front facing, non-occluded cells. We could compute
this analytically, by casting rays through the corners of cells and
determining the area on the screen of the corresponding projected
polygon. This could get costly, however, so instead we use a sim-
pler method of finding the depth. We simply render the id mesh
and count the average number of pixels per cell. We describe this
in more detail in Section 5.1.1.

We only compute a painting’s depth level at its construction or
when the maximum depth changes, so this operation need not be
real-time. However, there is another use of this computation —
determining the depth of the display view. We can calculate the
appropriate depth by temporarily creating a new painting with the
current camera parameters. Fortunately, we really only need to re-
compute this value when the camera depth changes or the window
size is changed, provided the object is centered in the view port.
For high quality, off-line rendering, we can compute this value at
every step.

4 The user’s view

As mentioned before, the user interface is concerned with creat-
ing and editing paintings, not with the actual image creation. The
images can be created using a paint program or scanned in. The
interaction takes place using three windows (see Figure 3):

• Results window. The current object with the current coloring.

• Painting window. The current painting.

• Select window. The locations and directions of the paintings’
cameras relative to the object.

A typical user interaction session might go like this. The user po-
sitions the camera in the Results window to the desired view direc-
tion and image size. They then request a new painting, specifying
either base-coat or view-dependent. (Alternatively, the user picks
one of the current paintings to edit.) The user than sets or alters the
image and the mask of the painting. Various tools are provided to
determine where the other paintings overlap and to give clues as to
where the different parts of the object project to. The latter is useful
for determining occlusion of one part of the object by another part.
After the user is satisfied with the painting, the data structures are
updated and the result shown in the Results window.

If the painting is a view-dependent one, the user then adjusts
the range of camera positions for which the painting is valid. The
boundary of the valid region is determined by a set of extreme cam-
era positions which surround the view (see Figure 5). The user
creates new extreme positions by positioning the camera of the Se-
lect window and requesting a new point. Existing extreme points
can also be moved interactively by grabbing and pulling on them
(see Section 4.3).

The user can also adjust the percentage of base-coat which shows
through. This control is independent of the extreme camera posi-
tions. This is accomplished by choosing particular camera posi-
tions and giving the percentage for that camera position (see Fig-
ure 11 for an example use). The system automatically interpolates
between these sample points (see Section 6).

We now discuss the user interaction in more detail.

4.1 Results window

This window is primarily for viewing the object, although it also
serves as the mechanism for inputing camera positions for new
paintings. There are two different modes for viewing the object.
The first mode updates the texture map only when requested, the
second mode updates the texture map with the new camera position
every time the camera moves. The first mode is useful when paint-
ing the base-coat or for checking specific camera positions when
the resolution is too high to allow interactive rates.

When making a new painting, the camera position and window
size of the Results window dictates the camera position and image
size of the new painting.

4.2 Painting window

From this window the user imports and exports images. The win-
dow always shows the masked image of the selected painting (if
there is one). We read and write images and masks separately (al-
though the mask is stored internally as the alpha channel of the im-
age). This allows the user to keep a complete picture of the object
for reference purposes, even if only a small part of the image will
be used (as specified by the mask). When a new painting is created,
its image is initialized with the current rendering (as shown in the
Results window) and the mask is initialized to be white where the
object is and black everywhere else.

At any time the user can grab an image of the following (using
the painting’s camera parameters):

• A picture of the object’s state as currently shown in the Re-
sults window.

• A picture of the id mesh image.

Results window (3D) Select window (3D)Painting window (2D)

Figure 3: The three windows used for interaction. Left is the Results window, middle is the Painting window, and right is the Select window.
The cameras of the Results window and the Select Window are independent.

• A picture of the current image (without the mask).

• A picture of the current mask as a grey scale image.

There are also some useful ways to color the object in the Results
window:

• Color the object only with the base-coat.

• Color the object according to how much each painting influ-
ences the color. Each painting is assigned a unique color and
these values are blended on the object to produce the texture
map (see Figure 4).

The user can also snap the Results window’s camera to be the
current painting’s camera or its extreme points.

Finally, the user can also set the desired level of fidelity. There
are three numbers which control the update speed of the internal
data structures, and one number for the rendering update speed. The
first update number is the maximum depth (layer) of the base-coat,
which determines the amount of time it takes to update the base-
coat. There are two numbers for the view-dependent paintings. The
first number is the maximum depth for the view-dependent paint-
ings. The second number is the resolution in the directional domain
or how many pixels to assign for the hemisphere data for a single
cell. The final number is the resolution of the texture map itself in
number of pixels per layer 0 cell. The higher the resolution, the
longer it takes to update when the camera changes, but the better
the texture map.

For all of these numbers, the system provides the number needed
to achieve complete fidelity.

4.3 Select window

This window shows the relationships between the camera positions
of the various paintings, the extents of the view-dependent paint-
ings, and how much the base-coat shows through. There are three
major modes of interaction:

• Change the selected painting. This consists of simply clicking
on the dot corresponding to the desired painting. The Painting
window will be updated to show the selected painting.

• For a view-dependent painting, set or alter the extreme valid
camera positions and how quickly the painting fades out.

• Change how much the base-coat shows through for a given
camera position.

Figure 4: The sphere colored by how much each base-coat paint-
ing contributes. The viewing direction is from the top; the regions
boundaries are outlined for clarity.

The arrow direction is determined by thefrom andat points of
the painting’s camera. The distance out along the arrow is deter-
mined by the painting’s depth. The lower the depth, the longer the
arrow. The camera of either the Result or the Select window can be
snapped to any selected painting or extreme position.

If the selected painting is a view-dependent one, then the paint-
ing’s extreme camera positions are also shown. These extreme
points live on the sphere defined by thefrom andat points of the
camera. The points can be moved on that sphere by grabbing and
pulling on them. A new extreme point is created by moving the
camera to the desired extreme position and pressing the “Add Ex-
treme Painting” button. Points can also be deleted, although at least
three must remain. There is also a function which determines how
quickly the painting fades out (see Section 5.1.2). The function is
set using two sliders; the first adjusts when the fade starts, the sec-
ond adjusts how quickly the fade happens.

There is a function which returns, for any camera position and
direction, the amount the base-coat should show through (see Sec-
tion 6). This is a separate control from the extreme points. Nor-
mally, this function simply returns zero, and blending between the
base-coat and extreme views depends only on the defined extreme
points. To create a more complicated effect, such as “rippling” be-
tween the base-coat and a view-dependent painting, the user can op-
tionally set the blend value to a value other than zero (see Figure 11
for an example). The blend value function simply interpolates be-
tween a set of sample points. To set the sample points, the user
positions the camera to the desired camera location and requests a
new sample point. The blend value is adjusted using a slider. Ex-
isting sample points can be deleted, moved, and have their values

Four extreme positions around a dependent view Projecting to the plane to produce fade function

Normalized
coordinates

Projected
to plane

Fade
function

Frame

SurfaceView

Extremes

Figure 5: A view direction and its four extreme points. The fade function is constructed by projecting the points onto the plane and building
a smooth “hat” function over the resulting polygon by placing the fade curve with its 1 end at the center of the projected view and its 0 end
on the boundary of the polygon.

adjusted.

5 Internals

There are three levels of data structures:

• The actual data the user inputs, which we call a painting, con-
sisting of images, masks, and camera positions.

• The intermediate data which has two parts to it, the base-coat
data and the view-dependent data. This data is constructed
by blending the user’s paintings. The resolution of this data
determines the update time when the user changes the images
or extreme points.

• The texture map itself. This is updated from the intermediate
data. The update time is determined by the number of pixels
in the texture map, not by the resolution of the intermediate
data.

The next sections expand on these three data types, and also de-
scribe how data is stored and blended from level to level.

5.1 User’s data

The user’s data is called a painting and consists of a known camera
position, image size, and a masked image. The camera position is
chosen by setting the camera and image size on the Results window.
The image has an optional mask, stored in the alpha channel. (We
provide methods for reading and writing the mask as a grey scale
image.)

Each painting has an ideal depth, chosen so that the correspond-
ing id mesh, when rendered using the camera parameters and image
size, has roughly one pixel per cell.

Each painting is flagged as either being a base-coat or a view-
dependent painting. Users can toggle the type.

View-dependent paintings have additional data indicating the
range of camera positions the painting is valid for. These are stored
as 3D points on the sphere formed by thefrom andat points of
the camera. There must be at least three of them surrounding the
camera position. See Figure 5 for an example. The painting also
has a curve indicating the rate of fall-off.

5.1.1 Depth and the id mesh

In this section we discuss how to assign pixels in the painting’s
image to the cells of an id mesh at a given level. Each face in the id
mesh is assigned a unique id, which is then converted to an RGBA
value. The mesh is rendered using OpenGL with lighting and anti-
aliasing turned off. The RGBA values can then be read out of the
image buffer and converted back to their unique ids.

Rather than re-rendering the id image every time we copy colors
to the intermediate data, we cache the information in the following

form: For each visible cell, we store a list of(x,y)i , pi image posi-
tions and percentage values. Thepi are normalized to sum to one
and represent the percentage each pixel in the list contributes to the
final cell color. We also store, for each visible cell, the current color
and the current mask value, as calculated using this data.

To minimize gaps caused by the discrete nature of the id image,
we actually render the id images at twice the resolution of the paint-
ing’s image. For each pixel in the double-sized id image we add 1/4
of the corresponding(x,y) pixel in the actual image (recall that we
will normalize these percentages).

The(x,y)i , pi data only needs to be updated when the maximum
allowable depth changes. When the image or its mask changes, we
update the color and mask value assigned to each cell by blending
using the(x,y)i , pi values.

The last thing we need to do is define a painting’s “ideal depth”.
The ideal depth for an image would be a partition of the object’s
surface such that each cell mapped exactly to a single pixel. We
could conceivably compute such a partitioning but it would be ex-
pensive; instead, we pick the two adjacent layers which bracket the
ideal one. The ideal depth is a real number lying somewhere be-
tween these two layers.

To chose the bracketing layers we begin with the layer zero id
mesh, render, and count the average number of pixels. We continue
until we have reached the highest depth level or until the number
of average pixels drops below four (recall that our id images are
double-sized). At this point we return the current depth minus(4−
avg)/4. If we have reached the highest depth level, we return that
and the two bracketing layers will be the same.

Since we use two different id meshes we need to cache the
(x,y), p data for both of these bracketing layers.

5.1.2 Extreme camera positions

For paintings which have view-dependent data we need a way to
define what part of the hemisphere of directions the data is good for.
For this we use the extreme points and the fall-off curve. Again, this
data can be pre-computed and stored, and only needs to be updated
when the extreme points or the fall-off curve change, not when the
image changes.

Determining the array of cell color values for the view-dependent
paintings is done by “splatting” the pixel color onto some portion
of the hemisphere (see Figure 5 and 6). To figure out the region
of the hemisphere we need to update, we first project the painting’s
camera and extreme points onto the plane. We then form a polygon
from the projected extreme values, sorting them radially around the
projected camera. Finally, we construct a fall-off function by tak-
ing the fall-off curve and scaling and rotating it so it is one at the
projected camera, and goes to zero by the boundary of the polygon.
The exact projection function is given in Appendix A.

The final mask value for a given hemisphere pixel in a given cell
is the product of the mask value for the cell, and the fade function
at that pixel (see the following section for how the hemisphere data
is stored in the cell).

Figure 6: Projecting from the hemisphere of directions to the plane. On the right we show the projection of two different data sets; an evenly
distributed set of data points generated from an icosahedron, and concentric rings taken at evenly spaced longitudinal intervalsθ = π/2 to
θ = 0.

5.2 Intermediate data construction

We first give a high-level view of the algorithm and then expand on
the individual steps.

The intermediate data is a hierarchical structure consisting of ar-
rays of color data. This hierarchy corresponds to the cell layer hier-
archy. For a given level in the hierarchy there is one “pixel” for each
cell. For the base-coat data, each “pixel” is a single color. For the
view-dependent data the “pixel” is an array of colors corresponding
to the hemisphere of colors projected to the plane.

To fill in the base-coat data we begin at the highest depth level
and work our way down to level 0. Each painting with a bracketing
level at the highest level first fills in all the cells it has data for.
These colors are blended where more than one painting specifies a
color. Any missing pixels are filled in by their neighbors (if there
are any nearby neighbors).

To fill in the subsequent levels, we again ask any painting at
the current level to fill in the cells it has data for. Instead of flood
filling, however, we fill in missing data from a filtered version of
the previous level.

The view-dependent data is filled-in in a similar manner. Each
“pixel” is now a an array of data representing a hemisphere of view
directions. The paintings fill in only the part of the hemisphere
indicated by the extreme points. This data is filtered and used in the
next lower level. If no data exists at either this level or the previous
one then the base-coat data for that cell is used.

5.2.1 Data filling

For the base-coat data we store a single color for each cell. Note
that if all the base-coat paintings have the same ideal depth, then
the layers of the base-coat data would form a mip-map.

For the view-dependent data we store an array of values at each
cell representing the hemisphere of directions at that cell. See Fig-
ure 6 for a pictorial example of this, and Appendix A for the de-
tails of how we convert from the global view directions to the unit
square.

We have already discussed how to assign colors to cell ids for
a single painting. To fill in the intermediate data we simply query
each painting at the appropriate depth and normalize the results. For
instance, a painting at depth 2.3 would contribute 0.3 of its color to
the cell layer two and 0.7 of its color to the cell layer three. If
a second painting had a depth of 2.9, the cell layer at level three
would be a blend of the two paintings, 0.3/1.2 of the first painting,
and 0.9/1.2 of the second painting.

For each cell at layerd the painting returns a color, percentage
pair. This color is found as described in Section 5.1.1. The per-
centage is the mask value multiplied by a percentage based on the
ideal depthd. If the painting is bracketed by layeri and i + 1, the
percentage for layeri is 1− (d− i). For layeri +1 the percentage
is 1− (i +1−d).

This blending process is illustrated in Figure 7.

For the view-dependent data each cell “pixel” is an array of
hemisphere data. The painting returns, for each element of the ar-
ray, its masked color multiplied by the depth percentage and with
an additional multiplier, the fade function value for that element.
Again, the values are normalized. To produce a smoother blend
into the base-coat data, if the total sum of all the contributing paint-
ings isα < 1, we also blend in 1−α of the color of the base-coat
at that cell.

5.2.2 Filtering

If every cell in every cell layer is covered by some painting then we
are done. However, in general there will be missing values. These
can occur in one of two ways; either a gap was left in a cell layer
because the rendered cell mapped to less than 1/4 pixel, or there
are no paintings in that direction at that level. To address the first
problem, we “flood fill” from neighboring pixels. At the highest
level we propagate values up to half the level 0 cell size; for lower
levels we only propagate to the nearest cell.

To address the missing layer problem, we filter the next higher
level and use the filtered values in places with no data. At the high-
est level missing data is simply set to gray2.

The view-dependent data is filled-in in a very similar manner ex-
cept for how to deal with missing data. Each layer has the same
size array of hemisphere data for each cell. We can filter these ar-
rays by blending the four arrays of the higher level, lining up the
direction values. In addition to filtering the colors we also filter the
combined percentages, as returned by the paintings. When filling
in missing data we only use the filtered version if the previous layer
has a non-zero percentage at the cell array value. For the remain-
ing missing data we fill in with the base-coat data for that cell at
the same depth. (If the base-coat maximum depth is less than the
current view-dependent depth, we take the highest level available.)
The reason we only propagate non-zero filtered data is to prevent
“copying” the highest level base-coat data down through the view-
dependent layers.

5.3 Intermediate data to texture map

In this section we discuss assigning colors to texture map pixels.
If the texture map is partitioned exactly the same as a given layer
and we are at that layer’s depth we could just copy the intermediate
data values. In general this will not be the case and we need to blend
between nearby cell values. We also need to blend between the two
bracketing layers and the hemisphere array data. In all these cases
we blend using a linear function.

The reconstruction function we use within a cell layer and for
the hemisphere data is a normalized hat function centered on each

2It is possible to propagate the dataup the layers as well, which would be
useful if the artist wanted to add detail at a higher level but keep the current
base-coat.

Figure 7: How data is blended from two overlapping paintings.

cell and extending half way into its neighbor cells (see Figure 8).
In areas where the cells have a rectangular topology we do not need
to normalize and there will be at most four contributing non-zero
functions. For manifold surfaces this is the case everywhere except
at the vertex chart corners when then number of faces meeting is
not four. In this case we simply normalize.

We do this reconstruction for layeri and layeri + 1 and blend
the results according to the Results window’s current depth. Since
the cell data is hierarchical, we can re-use most of the computation,
simply multiplying the cell indices by 2.

For the view-dependent data within a cell we use the same re-
construction function but applied to the array of hemisphere data.
The point to reconstruct is found by projecting the vector from the
current camera to the center of the texture map pixel onto the hemi-
sphere data using the equation in Appendix A. If the point projects
to the boundary or beyond we take the closest pixel in the hemi-
sphere array data.

5.4 Texture map

To fill in the texture map we walk through all the texture map pix-
els, recomputing their value based on the current depth and vector
to the camera. The vector to the camera is taken to be the center
of the texture map pixel minus the camera point. This results in a
nearly fixed cost per frame (we do not compute values for back-
facing pixels). We can also decouple the rendering from the texture
map update, enabling interactive camera control even if the texture
update is not real-time. Ideally, the number of pixels in the texture
map should reflect the “depth” of the object, as described in Sec-
tion 3.2. However, we currently cache the surface normal and blend
info for each texture map pixel, so altering the number of pixels is
expensive. Instead, we simply pick a high enough resolution for the
current stage of editing and let OpenGL’s mip-mapping adjust the
texture map resolution for us.

A brief note on texture mapping for manifolds: Since the orig-
inal paper does not provide details on texture mapping for mani-
folds, we do so here. Each chart is assigned a portion of the texture
map covering the center of the vertex chart, a vertical stripe down
the edge chart, and the center of the face chart. These areas corre-
spond to the tessellation, plus a pixel padding around the outside.
The texture maps will therefore overlap along the boundaries of the
tessellation. Figure 7 shows the texture map for the sphere colored
by the texture map areas.

Figure 8: Reconstructing the value at a point on the surface. Re-
sulting point is a linear sum of the four functions overlapping at
any given point.

6 Blending the base-coat

In this section we describe an additional function which lets the
user control how much of the base coat shows through independent
of the view-dependent paintings. This is a function defined over
all camera positionsp and orientationsv which returns a number
from 0 to 1 (B(p,v) → [0,1]). The final color of the texture map
pixels isB(p,v) ∗Cbase−coat + (1−B(p,v)) ∗Cdep. Normally this
functions is 0 everywhere. To alter this function, the user creates
one or more blend camera points(p,v)i and specifies a valuebi ∈
[0,1] for that point. We then specify a direction clip valuecv and
a distance clipping valuecp (currently the average minimum dot
product and distance for all blend points). The function is then (all
vectors are normalized):

si = max(0,
< v,vi >−cv

1−cv
)∗max(0,1− ||pi − p||

cp
)

B(p,v) = ∑i bisi

∑i si

If ∑i si is zero thanB(p,v) returns 0.

A Mapping to the plane

We map a direction vector to the plane by first writing a matrix
transformM which takes the frame at the surface point to the Eu-
clidean axes with the normal pointing in they direction and the
s derivative pointing in thex direction. The direction vector is
mapped to the normalized coordinate system usingM. The pro-
jection to the plane is then:

(s, t) = (x,z)∗ (−1/(y+1))

The upper hemisphere maps to a circle of radius of 1. Figure 6
shows the effect of this projection on a set of uniformly distributed
points (constructed by sub-dividing an icosahedron) and a set of
circles on the sphere formed by evenly incrementing the latitude
(φi = i ∗δ).

References

ARAD, M. 1997. Isometric texture mapping for free-form surfaces.Com-
puter Graphics Forum 16, 5, 247–256.

BLOOMENTHAL , J.,AND WYVILL , B. March 1990. Interactive techniques
for implicit modeling. 1990 Symposium on Interactive 3D Graphics 24,
2, 109–116.

BUCK, I., FINKELSTEIN, A., JACOBS, C., KLEIN , A., SALESIN, D. H.,
SEIMS, J., SZELISKI , R., TOYAMA , K., PRAUN, E., AND HOPPE, H.
July 2000. Lapped textures.Proceedings of SIGGRAPH 2000, 465–470.

Figure 9: A fish with scales that come and go. Frames are from a video sequence.

Automatic

Hand-drawn

Figure 10: A vase with a flower pattern. The side pattern only appears from the side. If the automatic filtering is used, the pattern appears as
shown on the bottom when the object is at a distance. On the top, the hand-painted depth effect is shown.

DEBEVEC, P. E., TAYLOR , C. J.,AND MALIK , J. 1996. Modeling and ren-
dering architecture from photographs: A hybrid geometry- and image-
based approach.Proceedings of SIGGRAPH 96(August), 11–20.

DEBEVEC, P. E., YU, Y., AND BORSHUKOV, G. D. June 1998. Efficient
view-dependent image-based rendering with projective texture-mapping.
Eurographics Rendering Workshop 1998, 105–116.

GORTLER, S. J. Unpublished work. We appreciate Gortler’s having told us
about this work.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI , R., AND COHEN, M. F.
1996. The lumigraph.Proceedings of SIGGRAPH 96(August), 43–54.

GRIMM , C. M., AND HUGHES, J. F. August 1995. Modeling surfaces
of arbitrary topology using manifolds.Proceedings of SIGGRAPH 95,
359–368.

HANRAHAN , P., AND HAEBERLI, P. E. August 1990. Direct wysiwyg
painting and texturing on 3d shapes.Computer Graphics (Proceedings
of SIGGRAPH 90) 24, 4, 215–223.

HUTCHINSON, D., LIN , F., AND HEWITT, T. August 1996. Surface graph
sketching.Computer Graphics Forum 15, 3, 301–310.

KLEIN , A. W., LI , W. W., KAZHDAN , M. M., CORREA, W. T., FINKEL -
STEIN, A., AND FUNKHOUSER, T. A. 2000. Non-photorealistic virtual
environments.Proceedings of SIGGRAPH 2000(July), 527–534.

KOWALSKI , M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L.,
BARZEL, R., HOLDEN, L. S., AND HUGHES, J. August 1999. Art-
based rendering of fur, grass, and trees.Proceedings of SIGGRAPH 99,
433–438.

MAILLOT , J., YAHIA , H., AND VERROUST, A. August 1993. Interactive
texture mapping.Proceedings of SIGGRAPH 93, 27–34.

NEYRET, F., AND CANI , M.-P. August 1999. Pattern-based texturing
revisited.Proceedings of SIGGRAPH 99, 235–242.

OLIVEIRA , M., BISHOP, G., AND MCALLISTER, D. July 2000. Relief
texture mapping.Computer Graphics (Proceedings of SIGGRAPH 2000)
34, 4, 359–368.

PERLIN, K., AND VELHO, L. August 1995. Live paint: Painting with
procedural multiscale textures.Proceedings of SIGGRAPH 95, 153–160.

PULLI , K., COHEN, M., DUCHAMP, T., HOPPE, H., SHAPIRO, L., AND

STUETZLE, W. June 1997. View-based rendering: Visualizing real ob-
jects from scanned range and color data.Eurographics Rendering Work-
shop 1997, 23–34.

RECKER, R. J., GEORGE, D. W., AND GREENBERG, D. P. 1990. Accel-
eration techniques for progressive refinement radiosity.1990 Symposium
on Interactive 3D Graphics 24, 2 (March), 59–66.

ROCCHINI, C., CIGNONI, P., AND MONTANI , C. June 1999. Multiple
textures stitching and blending on 3d objects.Eurographics Rendering
Workshop 1999.

WILLIAMS , L. March 1990. 3d paint.1990 Symposium on Interactive 3D
Graphics 24, 2, 225–233.

WINKENBACH , G., AND SALESIN, D. H. July 1994. Computer-generated
pen-and-ink illustration.Proceedings of SIGGRAPH 94, 91–100.

WOOD, D. N., AZUMA , D. I., ALDINGER, K., CURLESS, B., DUCHAMP,
T., SALESIN, D. H., AND STUETZLE, W. July 2000. Surface light fields
for 3d photography.Proceedings of SIGGRAPH 2000, 287–296.

Figure 11: This model has two dependent views, one from the left and one from the right. The two dependent views fade in and out together
based on the value of the blend function, specified on the left. Red points have a value of 1 (only the base-coat) white points have a value of
0 (use the dependent view).

