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Abstract

We present a surface reconstruction technique that constructs a smooth, Ck, analytic surface from scattered data.
The technique is robust to noise and both poorly and non-uniformly sampled data, making it well-suited for use
in medical applications. In addition, the surface can be parameterized in multiple ways, making it possible to
represent additional data, such as electromagnetic potential, in a different (but related) coordinate system to the
geometric one. The parameterization technique also supports consistent parameterizations of multiple data sets.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computing Methodologies]: Computer Graph-
icsComputational Geometry and Object Modeling

1. Introduction

Mesh reconstruction from data is a well-studied prob-
lem, and good solutions exist, particularly when the un-
derlying surface is uniformly sampled [CDR05, BMR∗99,
MAVdF05]. Unfortunately, most medical data is not sam-
pled uniformly. Specialized techniques exist for contour
data [PSV98, AG04] but they may not produce a mesh with
the correct topology. Parameterizable reconstructions for
data sets of arbitrary topology are less well-studied in ei-
ther case. We present a solution that produces a water-tight
surface of a given topology. We are primarily interested in
medical applications, but also show that the approach works
for laser-scanned data sets.

Increasingly, medical data consists not just of geometry,
but of additional information such as electromagnetic poten-
tial across the surface. The best parameterization for these
additional data may not be the geometric one. For example,
in the heart data set (Figure 1), there are three different pa-
rameterizations. The first is the geometric one, which con-
sists of small, ellipsoidal pieces of surface. The second one
is a texture map based on overlapping vertical stripes (the
original images were taken by rotating the camera around
the heart). The third one arises from three Photo Diode Ar-
ray sensors placed around the heart which indirectly measure
electric activity over time by capturing fluorescent images. A
subsequent algorithm converts the image data to electromag-
netic data. This algorithm was originally designed to operate
on grids of a particular size; rather than re-design the algo-

rithm, we cover the corresponding areas with quadrilateral
parameterizations (see Section 8).

The input to our algorithm is a set of unlabled data points.
Our approach begins by constructing local neighborhoods
around each point — essentially one-ring approximations of
the local surface. We use this local connectivity information
to put the data points into a 1-1 correspondence with the
appropriate domain D for that topology (either a sphere or
an n-holed torus). We then define overlapping embeddings
for subsets of D, each of which smoothly approximates the
corresponding data points. These individual embeddings are
blended together to produce the final, Ck surface. We then
define additional parameterizations of D more suited to rep-
resenting other data, such as color, on the surface. These pa-
rameterizations are linked to the geometric one through D,
but can take very different forms.

Contributions: Our primary contribution is an analytic sur-
face reconstruction technique that supports subsequent rep-
resentation of additional data defined on the surface. We also
describe a robust method for estimating local neighborhoods
and normals in irregularly sampled data. As an intermediate
stage of the surface construction we produce a water-tight
mesh that interpolates the data points. The final surface has
guaranteed topology and continuity, and also has a very com-
pact representation.
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a) Lab setup b) Example image c) Samples e) Texturing f) PDA g) Processd) Reconstruction

Figure 1: Reconstructing a rabbit heart. From left to right: a) The capture set-up. b) Images used to perform silhouette volume
carving. c) Generated samples. d) Reconstructed surface created by embedding graph of data points on the sphere, covering the
sphere with charts, then fitting the charts to the data. Ovals on the sphere show chart domains, colors (right) indicate charts. e)
Texture mapping with the original images. f) Parameterization for PDA images. g) Electromagnetic data calculated on surface.

2. Previous work

A full review of surface reconstruction techniques is beyond
the scope of this paper; we discuss examples of several dif-
ferent approaches.

Surface reconstruction approaches can be broken into
three categories based on the type of data they pro-
duce — meshes, analytical surfaces, and moving least-
squares surfaces. Mesh-based approaches include 3D De-
launey triangulations [MAVdF05, Att97, CDR05, FR02],
alpha-shapes [BBCS97], rolling-ball [BMR∗99] or locally
greedy [Boi84], implicit-based [HDD∗92] and contour fill-
ing [AG04]. Analytical approaches build either spline-
based [GLC02] or smooth implicit surfaces [SOS04]. Mov-
ing least-squares approaches [FCOS05, OBA∗03] produce a
theoretically smooth surface onto which points can be pro-
jected. This surface can be converted to a mesh by building
an implicit function.

Mesh-based approaches typically build a triangulation
using all of the data points, then apply optional filter-
ing [SBS05] and simplification steps. The goal is to produce
a 2D manifold mesh which is water-tight (if the data form
a closed surface). Purely mesh-based approaches usually do
not deal well with noise or irregularly sampled data. One
option for dealing with noise is to build an implicit function
from the data, using signed-distances [HDD∗92] or moving
least-squares [FCOS05], then re-sample the implicit func-
tion using, e.g., Marching cubes.

One of the first mesh-based approaches used a local,
greedy strategy [Boi84] to add triangles to a mesh. The
rolling-ball [BMR∗99] approach added concepts from com-
putational geometry to produce a much more stable al-
gorithm with theoretical guarantees. The most theoreti-
cally sound work is based on 3D Delauney triangula-
tion [MAVdF05, CDR05], which has reconstruction guaran-
tees based on sampling densities. This is the epsilon-ball re-
quirement, which essentially states that the distance between
neighboring points be bounded by the distance to the nearest
medial axis.

Contour filling is a method developed specifically for
medical data consisting of one set of parallel slices [AG04,

CP99, PSV98]. It can not handle multiple slicing directions,
and gaps in the contours can cause the algorithms to fail.

Implicit surface [CBC∗01, AG04, YDC05, SOS04] fitting
is relatively robust to missing data but requires correct nor-
mals and current techniques do not handle noise directly (al-
though filtering, either of the implicit function or the output
mesh, can be applied as a post-process). They can be com-
putationally expensive to compute, although methods exist
for reducing the number of point samples used [SOS04] and
for speeding up computations [OBA∗03].

Spline-based approaches [EH96, HQ04, Geo] begin with
defining a patch network, then assign the data points to one
(or more) patches. Fitting then alternates between optimiz-
ing for the control points using a least-squares approach and
projecting the data points back onto the surface to adjust pa-
rameter values. This latter step can cause folding and mis-
assignment of data points. Finding an optimal patch network
is another issue. Another, somewhat more subtle issue is the
mixing of constraints — one set of constraints for keeping
patches connected smoothly, the second for fitting the data.

Previous manifold approaches use hand-crafted “exam-
ple” surfaces [GLC02], and rely on projection to establish
a correspondence between the surface and the data set. This
requires fairly accurate alignment of the example surface
and the data set, and is prone to fold-overs. An alternative
approach [GHQ05] works with a coarse mesh and regular
sampling.

3. Outline of approach

Wherever possible we would like to use the original data to
do the surface reconstruction. We also want to avoid having
local decisions about the data connectivity unduly influence
the final surface. We also want to be able to re-parameterize
any part of the surface at will, without restricting ourselves
to subsets of an initial parameterization. Finally, the recon-
structed surface should be water-tight, manifold, and of the
correct topology.

The surface representation we use (Section 4) consists of
a specific representation D of the desired genus (sphere or
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Figure 3: Constructing the chart functions for the spherical
(top) and n-holed (bottom) cases. MD maps from the domain
to the plane, MW rotates and scales the area of interest to
align it with the unit circle.

n-holed tori) and a mechanism for defining local parame-
terizations on that representation. Embedding the domain is
accomplished by defining a polynomial embedding for each
local parameterization, then blending the result together. Be-
cause we have a specific representation for D, we can define
additional, separate, local parameterizations more suited for
texture mapping, data process etc. Because all of the para-
meterizations are on the same domain D it is trivial to map
back and forth between them.

Find local neighborhoods (5)
Produces graph on data

Embed graph in domain D (6)
Find valid embedding
Adjust positions
Adjust graph connectivity

Create charts (7)
Ensure coverage of D

Create geometry (7.4)
Blend function per chart
Embed function per chart

Figure 2: Algorithm.

The first step
of the fitting
process assigns
locations in the
domain to each
data point. We
then create a
set of local pa-
rameterizations
based on the
distribution of
data points in the
domain — each
parameterization
covers roughly the same number of points. We then fit a
polynomial for each parameterization to its corresponding
data. Since the parameterizations are independent, we can
move both them and the data points around in the domain to
reduce the error in the fit or to better distribute the points in
the local parameterizations.

4. Surface representation

To produce a surface we begin by defining a manifold do-
main D for each genus (sphere or n-holed tori) [Gri04]. The
domain D is then embedded by defining embeddings of over-
lapping subsets of the domain. These individual embeddings
are then blended together (using the overlap information) to
produce the final surface. This is analogous to the spline ap-

proach, except we are blending functions instead of control
points.

The embedding Ec and blend Bc functions are built from
polynomial or spline functions that map portions of the plane
toR3 andR, respectively. In order to define these functions
on subsets Dc of the domain D, we must first map Dc to
the plane. Let αc : Dc → R2 be such a function; the entire
surface is then defined by:

E(p) = ∑c B(αc(p))E(αc(p))
∑c B(αc(p))

(1)

where we define Bc(αc(p)) to be zero if p /∈ Dc. We ensure
that the denominator is non-zero by covering every point in
the domain with at least one Dc, and defining the support
of Bc to be c. The continuity of E depends on the minimum
continuity of its constituent parts. In this paper the αc and
Ec functions are both C∞; the blend functions are C3. Unlike
splines, changing the continuity of the blend function does
not dramatically change the visual appearance of the surface
because we are blending between surfaces that nearly agree
already.

We define the αc functions so that they map Dc to a unit
disk centered at the origin. The term chart refers to Dc,
αc, and the unit disk. The embedding functions are poly-
nomials; we cap the degree between four and seven. The
blend functions are Ck B-spline basis functions “rotated”
around the origin [BBB87]; we could use a C∞ function if
desired [YZ04]. This produces a “bump” which is one at the
origin and goes to zero (along with the first k derivatives) by
the boundary of the disk.

The αc = MW ◦MD consists of a domain D-dependent
map MD from D to the plane, followed by a rotation and
scale MW (see Figure 3). Both MD and MW must be in-
vertible over the area of interest. For the sphere, MD is a
rotation of the sphere, followed by a stereographic projec-
tion [Gri05]. The rotation places the center of Dc at the north
pole and the projection then “unfolds” the sphere into the
plane, taking the south pole to infinity. The rotation and scale
are used to adjust the size and shape of Dc.

For n-holed tori, the domain is a 4n-sided polygon in
the hyperbolic plane [Gri04]. This domain simplifies to the
tiled Euclidean plane when n = 1. MD is a Linear Frac-
tional Transform that takes the center of Dc to the origin.
Let p = r(cosθ + isinθ) be the center of the disk. Then the
centering transform is:

T (p) =
[

cos−θ+ isin−θ 0
0 1

][
1 −r
−r 1

]
(2)

Again, MW adjusts the size and orientation of Dc. The charts
can be scaled until they begin to “wrap” around the handles.

5. Local neighborhoods

Our eventual goal is to embed the data points in the appro-
priate domain. A good embedding preserves the local sur-
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Correct culling Nearby surfaces Dense contours

Too many points Wrong surface Incorrect 
normal
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Figure 4: Examples of incorrect (top) and correct (bottom)
local neighborhoods and normals.

face structure — i.e., if the points qi form a ring around p
on the surface, then they should form a similar ring after
being embedded. For meshes, ensuring that the orientation
of the one-ring around each point is preserved (no folding)
ensures that the global embedding is correct. Our goal here
is to create the equivalent of a one-ring structure (the local
neighborhood) around each data point. These local one-ring
structures, when combined together, form a graph over the
data points which we then use to embed the graph in a man-
ner very similar to the mesh-based approach.

Essentially, the local neighborhood qi of a point p should
consist of an angle-ordered subset of the nearby points that
tightly surround p. The qi, projected onto the tangent plane
at p, should form a polygon enclosing p. Moreover, other
data points should project outside of the polygon. For regu-
larly sampled data the qi will usually be the Delauney neigh-
bors of p. Note that there are many possible polygons, de-
pending on the normal orientation, and even for a fixed nor-
mal the polygon is not necessarily unique. the within Fig-
ure 4 shows some examples.

We first discuss normal estimation, then give the algo-
rithm for finding the qi given a normal. We use the Singular
Value Decomposition (SVD) with an adaptive neighborhood
size to find the tangent plane and normal for the majority of
points; however, this can fail catastrophically in areas of both
high curvature and irregular sampling (Figure 4, right). This
is because the best-fit plane will be one that is perpendicular
to the desired tangent plane. In these cases, we use a more
expensive algorithm to find a normal who’s local neighbor-
hood correctly spans the contours.

Initial normal, SVD: We use a combination of Mi-
tra’s [MN03] and Tang’s [TM99] techniques to find the best
set of neighbors k from which to estimate the normal using
SVD. The best k depends on the sampling density, curvature,
and noise [MN03,DS05]. Flat, noisey, or poorly-sampled ar-
eas require a bigger k, but larger values of k perform poorly
in areas of high curvature. We search for the k ∈ [6,50] that

Calculate normal N̂ using SVD
Calculate local neighborhood qi
Calculate normal N̂qi from p and qi

Angle-weighted average of triangle normals qi, p,qi+1
If N̂ and N̂qi agree, done, use N̂, qi
Else try 20 evenly distributed normals N̂i

Calculate qi, N̂qi for N̂ j
Re-calculate q′i and N̂′

qi
from N̂qi and rate qi

Return best N̂′
qi

, q′i

Figure 5: Calculating the local neighborhood.

minimizes:

E =
λ1−λ2

(λ1 +λ2)
+

λ3

(λ1 +λ2)
(3)

where the λi are the Eigenvalues, sorted in descending order,
of the k×3 matrix made from qi − p, where the qi are the k
closest points. The first term measures how circular the k set
is, the second term the planarity. The normal N̂ is the third
Eigenvector.

Once we have a normal N̂ we use it to calculate the lo-
cal neighborhood, and from that the normal N̂qi of the local
neighborhood. If N̂ and N̂qi are similar ( N̂ · N̂qi > 0.9 ) then
the SVD normal is assumed to be correct. If N̂ and N̂qi do not
agree, then the data is either anisotropically sampled, near a
sharp feature or boundary, contains points from a disjoint
area on the surface, or a combination of the above.

Initial normal, search: If the SVD normal check fails, then
we try a set of twenty normals N̂ j evenly-distributed on the
sphere, and pick the one that results in the best local neigh-
borhood. Since the set N̂ j is sparse, we actually iterate once,
replacing N̂ j with the local neighborhood normal N̂qi . The
evaluation function we use balances how well-distributed the
qi are in the ring around p, and how well the qi approximate
all of the nearby points (see Appendix A).

Local neighborhood: This is not necessarily unique and
can be sparse (few qi ≈ 8) or dense. We use an ad-hoc algo-
rithm which culls out points that are sufficiently out of the
plane that they may belong to another part of the surface,
and points that are “blocked” by closer ones. If exact, ori-
ented normals are provided then we can cull out points with
normals in the opposite direction as well. See Appendix A.

The normal N̂qi is the angle-weighted sum of the face an-
gles qi, p,qi+1. We also detect if the point p lies on an edge
by the fact that the face normals cluster into two distinct
(greater than 30 degrees) directions; in this case, we set N̂qi

to be the average of the two face-normal cluster directions.

Statistics of this algorithm are given in Table 1, and a more
complete analysis in the supplemental materials. In particu-
lar, it should be noted that any algorithm works on simple
data sets such as the bunny, even with irregular sampling
and added noise. However, this is not the case for data sets
with high curvature and convex regions.

submitted to Eurographics Symposium on Geometry Processing (2006)



Paper ID 74 / WUCSE-2006-29: Smooth Surface Reconstruction using Charts for Medical Data 5

Chart coverage Chart coverage

Gap
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Embedded data points Embedded
data points

Surface 203 charts Surface 210 charts

Yellow: boundary
Red: high crv
Blue: low crv

Purple: gap
Blue: 2nd pass
Orange: initial

One chart Three charts

Figure 6: Data points on left; notice missing region both on top and on bottom. Middle: Place points on the sphere, build mesh
using QHull, cover with charts, embed surface. Right: Re-do embedding with updated neighborhood information from the first
QHull mesh. Both surfaces use the same polynomial degree (max 4). Embedded surface color indicates coverage — blue is one
chart, green two, yellow three, red four, and white more than four.

Data # points # Random # Bdry k Time
Bones 49701 847 134 27.59 0.99
Bunny 34834 2466 90 20.88 0.66
Garg 250003 40630 6 18.61 0.73
Heart 3631 485 25 20.65 0.69
Vase 1476 474 0 10.74 0.99

Table 1: Total number of points, number where N̂ and N̂qi

disagree, and the number of boundary points (no complete
neighbor set). k is the SVD neighborhood size. Timings are
per data point, in milliseconds, Pent.-M 1.5GHz, 768MB
Ram.

6. Embedding the data points

In this section we assign a location, D(p), in the domain D
for each point p. This is equivalent to the parameterization
assignment in spline fitting, except that we do not assign
points on a per-patch basis. Instead, each chart embedding
will determine which set of points (and parameter values to
use) based on the chart function αc (Section 7.4).

The goal of the embedding function is to distribute the
data points evenly in the domain, respecting the local neigh-
borhood connectivity. Once an initial set of locations is
found, and an approximate surface constructed, we can fur-
ther adjust the data point’s domain locations by letting them
“slide” around in D. This is analogous to the usual spline fit-
ting process of iterating between fitting with fixed parameter
points, and re-projecting to adjust the parameter values.

Finding the initial locations is domain dependent; we first
give the algorithm for the sphere, then the n-holed torus.

Sphere: We use Saba’s spherical embedding [SYGS05],
modified to take our local neighborhood data, to initially
place the points on the sphere. We use edge-length weights,
which try to preserve distances to neighbors. Once the points
are placed on the sphere we use QHull [BDH96] to build a
water-tight mesh on the embedded data (see Figure 6). By
moving the mesh vertices to the original 3D locations, we

get a mesh that interpolates the original data points (see Fig-
ure 12).

Gaps in the original data tend to produce large, uncovered
areas in the domain (see Figure 6). While the chart construc-
tion process (Section 7) will correctly cover them, the place-
ment is poorly distributed. These large areas also introduce
inaccuracies when interpolating (Section 7.4). The gaps arise
because any data point with partial neighbors gets “pulled”
in only one direction.

To better distribute the data points we use the connectiv-
ity of this first mesh to update the local neighborhood of the
boundary points. Essentially, we re-run the local neighbor-
hood process, this time adding in points that are also close
as measured by graph distance on the QHull mesh. If a non-
boundary point’s neighborhood radius changes dramatically
we mark it as being on a boundary. Re-running the spherical
embedding with the new neighborhood information gives a
more uniform distribution of points (right of Figure 6).

N-holed torus: To embed an n-holed torus we first find a
system of loops [EW05] in the surface, then place these loop
lines at the boundaries of our 4n-holed polygon (see Fig-
ure 7). We can then adjust the parameterization by moving
each point towards the center of its neighbors, being careful
to use the closest copy in Hyperbolic, not Euclidean, space.
Unlike the sphere case, this iterative approach is very stable
and quickly converges.

Unfortunately, all of the n-holed parameterization ap-
proaches require a manifold mesh [DS95]. To get around
this, we use an intermediate implicit surface construction
step [Ju04]. This algorithm was modified to a) return a sin-
gle, connected component, b) ensure the mesh is manifold
and c) return a list of which vertices were in the original
data set. The input to this algorithm is the local neighbor-
hood disks. The output is a mesh that contains a subset of
original points plus additional points introduced at oct-tree
boundaries.

We embed the implicit mesh in the domain, which gives
us the domain locations of some of the original points. To
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solve for the remaining points, we fix the locations of the
known points in the domain, then solve for the remaining
locations by placing each unpinned point in the center of its
known neighbors.

Adjusting the locations: is a straight-forward optimization
step where we allow the point to slide in the domain until it
minimizes the projection error of an overlapping chart em-
bedding — essentially moving the point until the error is in
the surface normal direction.

7. Making charts

In this section we specify the αc chart functions and fit them,
via the embedding functions Ec, to the data points. The goal
is to cover the domain with charts, without having any chart
get too “big” — we want to bound the number of data points
each chart covers. This lets us use lower-order polynomials
for the Ec functions.

The user provides three parameters: the number of data
points each chart should overlap, the chart spacing, and the
maximum amount of total curvature allowed per chart. The
more the charts overlap, the smoother the result.

7.1. Placing chart centers

The goal of the chart center algorithm is to place the cen-
ters at equally spaced distances along the surface (see left of
figure 9). In places with high curvature we place the centers
closer together.

The input to the algorithm is the desired geodesic ra-
dial spacing r and a maximum curvature C. r can be cal-
culated from a desired number of points Gn using an esti-
mate [MN03] of the sampling density ρ.

r = sr
√

Gn/(πρ) (4)

For the figures in this paper we set sr to be 0.6; this results
in charts that overlap substantially.

To place a new chart center, we look for a data point which
is not within r of an existing center and is at a distance 2r
from as many existing centers as possible. To keep the algo-
rithm efficient, we only look in an expanding front around
the current set of centers. We seed the algorithm with data
points on the boundary and points with high curvature.

When a center is selected it marks all of the points within
the distance r (in graph distance) as covered using breadth-
first search across the local neighborhood graph. The mark-
ing process is terminated early if the total accumulated cur-
vature is greater than the allowable curvature. Our curvature
measure is the second half of Equation 3; therefore it mea-
sures curvature on cylinders as well as peaks and valleys. It
is also area-normalized; a bigger value should be used only
if the data set has noise.

Once the chart centers are selected we assign each data

point to its closest center. We then construct a group ad-
jacency structure, similar to a Delauney triangulation, by
marking two centers as adjacent if they share a boundary.
This information is used to place charts in the domain and
control their size.

7.2. The chart functions

For each chart center pc we create a chart centered at the do-
main locationD(pc). To determine the orientation and initial
xy scaling of the chart, we map all of c’s neighbor’s centers
to the plane using MD. We apply Singular Value Decompo-
sition to find the rotation and (non-uniform) scale sx,sy that
best maps the neighbors to the boundary of the unit disk.
Next, we adjust the overall scale until the chart covers the
specified number of points, scaling down if the total accu-
mulated curvature is bigger than the specified bound.

Once an initial set of charts is defined we repeat the
chart center algorithm, this time pre-marking as covered any
points already in a chart. All existing chart centers are used
when finding the chart adjacency structure. We repeat mak-
ing charts and finding chart centers until all of the data points
are covered. Typically, one to three iterations suffices.

We consider a point to be covered if it is significantly in
the interior of some chart. More specifically, a domain point
D(p) is only considered well-covered if there is a chart c
such that αc(D(p))− (0,0) < 0.9.

7.3. Filling in gaps

The previous process ensures that every data point D(p) is
covered by at least one chart. As a final step we ensure that
the entire domain D is covered, adding in the biggest pos-
sible uniformly-scaled chart that covers any missing regions
(the purple charts in Figure 6, middle). We let the chart cen-
ter move as well as change scale, moving the center towards
the maximally uncovered area.

Guaranteeing coverage: An uncovered region must be ad-
jacent to either a) a chart that overlaps no other charts or
b) the intersection of two chart boundaries. Sampling the
boundary of each chart a few times finds the first case, and
sampling pairs of charts for intersections finds the second
case.

7.4. Fitting charts

Although mathematical smoothness is guaranteed, visual
smoothness is a function of both the smoothness of the indi-
vidual embedding functions and how well they agree where
they overlap. Although it is possible to globally fit all of the
functions at once, this can be computationally expensive. We
prefer, instead, to fit each function individually, relying on
shared data point constraints to enforce similarity. If the data
distribution is dense and uniformly sampled then a straight-
forward least-square approach (Ax = b, x = [xi j,0≤i, j<K ]T
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Figure 7: 2-holed tori. a) Tiling the Hyberbolic disk with an 8-sided polygon. We keep the center and adjacent copies of τ. b)
Cut lines on the data set; yellow and blue arrows match arrows in τ. c) The mesh after cutting and relaxation (70 iterations).
Chart coverage, right: blue dots are chart centers, colors indicate chart order. d) The reconstructed surface, colored by chart.

the coefficients of the Kth order polynomial) suffices. Let
{pi : ||αc(D(pi))− (0,0)|| < 1.2}c be the set of data points
that map to chart c, where we take points just outside of the
chart as well. Let (s, t) = αc(D(p)). We define each row of
the matrix Ax = b by

[· · ·sit j · · · ][· · ·xi j · · · ]T = [p] (5)

To choose K, we find the smallest K such that
∑p∈{pc} ||Ec(αc(D(p)))− p||< ε. We set ε to be some frac-
tion (1.2) of the average of the neighborhood edge lengths in
the set {p}c.

7.5. Non-uniform data

Grid with 8 divs

Purple: interpolated
B/G/Y: # pts in bin

Figure 8: Binning
data. Bins with
centers inside the
big circle are kept.
Small circle is
unit disk. Colors
indicate weights.

In the case of non-uniformly sam-
pled data we modify Equation 5
to account for both unevenly dis-
tributed data points and to inter-
polate across areas with no data.
Contour samples present particu-
lar problems because the surface
is free to undulate between rows
of samples; naively adding addi-
tional samples between contour
rows can actually exacerbate this
problem.

The least-squares approach to
surface fitting works best if the
data points are evenly distributed
in the domain. Rather than re-
sample everywhere, we weight
the original samples by their local
density, and only resort to inter-
polated samples where there is no
data. More specifically, we place
a grid over the unit circle and
count the number of samples that
fall into each gird cell. If there
are n samples in a grid cell, we
weight each of those samples by

1/n. Any empty grid cell is filled
with an interpolated sample. The
grid we use is actually one cell bigger on all sides than
the unit circle and has the corner points culled (see Fig-
ure 8). The number of grid cells should be at least as big
as the maximum number of allowable coefficients. We used
a (K +2)× (K +2) grid spacing for a maximum polynomial
order of K.

7.6. Interpolating data

The interpolation function takes in a point on the domain and
returns a point inR3. Currently, we are only using linear in-
terpolation of three points. To find those points, we tessel-
late the domain using either the 3D convex hull (sphere) or
a 2D Delauney triangulation, adding additional points along
the boundary to ensure the polygon edges lie on the bound-
ary (n-holed tori). This produces two meshes with identical
topology, one of which approximates the surface. We project
the domain point onto the mesh embedded in D to get the
face and barycentric coordinates, then use the corresponding
3D mesh vertex locations to compute the point’s interpolated
location.

8. Additional parameterizations

We are not limited to the parameterizations given in Sec-
tion 4; we can use any invertible mapping of the sphere or
Hyberbolic disk. For the texture mapping parameterizations
of the heart we use Gnomonic mapping extended to con-
vex polygons to create polygonal patches; a similar approach
works in the n-holed tori case using a version of barycen-
tric coordinates on the Klein-Beltrami model [Gri04]. The
polygonal patches match the images projected onto the
geometry; vertical stripes for the texture map images, square
patches for the PDA images. We build blend functions in
the same manner as before, but define the texturing or PDA
function to be black where the domain is uncovered.
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Chart centers

Marching cubes samples
Original data Original data with 50% noise

Figure 9: Three different bunny data sets. For all three, the average chart covers 300 points, has maximum curvature 10,
and maximum polynomial degree 6. Left: Marching cubes sampled from PolyMender, 45860 samples, 1501 charts. Upper left
shows chart centers, lower left shows chart locations on the sphere. Middle: Original data, 34834 samples, 1163 charts. Right:
Original data with random noise added to each data point. Amount of noise was between zero and 50 percent of the average
edge length in the original zippered mesh.

9. Implementation issues

To speed up the local neighborhood computations we build a
KD-tree, which supports closest point searches in O(m logn)
time, where m is the number of neighbors and n is the num-
ber of points [AMN∗98]. We also use a KD-tree built from
the face centers to use as a first guess when interpolating data
points.

We make extensive use of the QHull library [BDH96]
both to perform interpolation and to tessellate [Gri05] the
embedding.

We keep a list of which charts overlap and evaluate Equa-
tion 1 starting with a point in a particular chart. To find the
overlaps we map the boundary of chart i into chart j via
α j ◦α

−1
i and check for intersections with the unit disk. We

break the boundary into sections and check each section, re-
cursively splitting it. We use the derivatives of the map [SB],
to conservatively bound each section with a triangle.

Hyperbolic domain: The n-holed torus domain is the Hy-
perbolic disk, tiled with an infinite number of copies of the
4n-sided polygon. In practice, we only work with the inte-
rior copy and all of the ones that are adjacent to it, mapping
points back into the interior copy (see Figure 7).

10. Results and remarks

We have tested our surface reconstruction on a range of data
sets: unstructured medical data (Figure 1), contour sets (Fig-
ure 10), dense laser scans of varying sizes (Figure 9, 12),
Marching cubes samples (Figure 9) and data samples from
smooth surfaces (Figure 7). Surface reconstruction ranges
from under a minute (the heart) to several hours (the gar-
goyle). We used the default parameter values given through-
out the paper, except for the three data-dependent parameters
listed in Table 3.

Data LN Embed Charts Fit Eval Total
Bones 4.48s 5m 3m 4m 3m 16m
Bunny 2.30s 48s 70s 7m 1m 10m
Garg 18.3s 123s 1.5h 15m 2m 2.5h
Heart 0.25s 3s 10s 3s 2s 20s
Vase 0.15s 45s 70s 10s 5s 2m

Table 2: Approx. timings, Pent-M 1.5GHz, 768 MB Ram.

As an intermediate step this approach produces a water-
tight mesh of the correct topology. The metric used to trian-
gulate the data, however, is only loosely based on the geom-
etry of the original data. For dense, evenly sampled data sets
the resulting mesh is surprisingly good (left of Figure 12) but
the result is somewhat more noisy, although still acceptable,
on other data.

Our current implementation errs on the side of many small
charts with substantial overlap. We have also experimented
with larger charts that overlap less. Results are visually sim-
ilar for dense meshes and no noise, but unwanted undula-
tions can arise in noisy data sets. This is primarily because
charts make local decisions about how to approximate the
data, and those decisions may not agree, leading to smooth,
but noticable, changes between charts. Globally fitting the
surface reduces this problem, but this is an expensive solu-
tion and introduces additional questions about what kinds of
additional “agreement” constraints to add.

The algorithm is relatively insensitive to neighborhood
sizes and polynomial degrees, with the exception of areas
of high curvature. In this case, stretching a chart over the
area can cause very poor behaviour, which is only partially
mitigated by increasing the degree of the polynomial. These
areas are better covered by a small number of charts, each
with limited “bending” needed.
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GeoMagic
NURBSManifolds

Data

Figure 10: The bones of the hand constructed from CT scans. Left: Our reconstruction. Middle: Example data showing contour
structure. Right, NURBS surfaces constructed using commercial software (Geomagic).

Data Pts Crv Deg Charts Overlap Fit
Bones 100 12 4 3009 5.14 0.22/0.21
Bunny 300 10 6 1164 5.85 0.21/0.23
Garg 500 25 8 3505 4.60 0.61/0.59
Heart 100 15 4 224 6.17 0.31/0.30
Vase 20 15 4 355 4.82 0.19/0.18

Table 3: Surface information. Points, curvature, and de-
gree are input parameters. Overlap is the average number
of charts overlapping each data point. Fit is the average fit
per chart, followed by the total fit for the surface, given as a
percentage of the average edge neighbor length.

Appendix A: Local neighborhood

ld
p

Tangent plane

N or Nj

q0

q4

q3

q2

q1

lq
dk

d

d

Td

Figure 11: Labeling for local
neighborhood.

Refer to Figure 11.
The qi are the local
neighborhood, the
dk all points in the
k neighbor set and
lq = max ||qi− p||.
Project the dk and
qi into the tangent
plane at p. Let ⊥
d and 6 d be the
distance to and an-
gle in the tangent
plane, respectively. Sort the qi by angle. For every point dk
find the pair of points qik and qik+1 that bracket dk. The error
metric for that neighborhood is:

lik = ||qik − p|| t =
6 dk − 6 qik

6 qik+1− 6 qik
(6)

EN = ∑
dk

⊥ dk min
(

1,
(1− t)lik + tlik+1

||dk − p||

)
(7)

To find the qi, bin the dk by 6 d, keeping only the closest
point for each bin (32 divisions). Let dl and dr be the points
bracketing dk, and γ the angle between dl and dr. We cull dk
if:

Plane culling: The angle γ is small and the distance ⊥ d rel-

ative to Td is big. Specifically, γ < 0.6π and ⊥ d/Td > 0.75,
or γ < 0.3π and⊥ d/Td > 0.5, or γ < 0.2π and⊥ d/Td > 0.3.

Blocked culling: If γ > π/2 then dk is not culled. If dk is very
close to dl or dr (within π/16) and farther away, it is culled.
If dk is twice as far away as both dl and dr, it is culled. If
γ < 0.25π and dk is farther away than dl and 1.5 farther than
dr (or vice-versa) then it is culled. Increasing the allowable
angles (the γs) results in a more sparse set of neighbors.

The culling order is found by randomly walking through
the current set of points, testing each. If a point meets the
criteria then it is culled and the random walk re-started.
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