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Abstract. Automatic detection of features in three-dimensional objects is a crit-
ical part of shape matching tasks such as object registration and recognition. Pre-
vious approaches to local surface matching have either focused on man-made ob-
jects, where features are generally well-defined, or required some type of user
interaction to select features. Manual selection of corresponding features and
subjective determination of the difference between objects are time consuming
processes requiring a high level of expertise. Curvature is a useful property of a
surface, but curvature calculation on a discrete mesh is often noisy and not always
accurate. However, the Curvature Map, which represents shape information for a
point and its surrounding region, is robust with respect to grid resolution and mesh
regularity. It can be used as a measure of local surface similarity. We use these
curvature map properties to extract features and segment the surface accordingly.
Although thresholding techniques can be used to generate reasonable features, the
choice of a threshold is very subjective and the results may be very sensitive to
this choice. To avoid the threshold dilemma and to make the selection of the fea-
ture region less subjective, we employ a min-cut/max-flow graph cut algorithm,
with vertex weights derived from the curvature map property. A multi-scale ap-
proach is used to minimize the dependence on user defined parameters. We show
that by combining curvature maps and graph cuts in a multi-scale framework, we
can extract meaningful features in a robust way.

1 Introduction

Automatic detection of features in three-dimensional (3-D) objects is critical for tasks
such as object registration and recognition. For example, identifying corresponding re-
gions between two similar surfaces is a necessary first step toward alignment and regis-
tration of those surfaces. A fundamental question is: What constitutes a feature? Man-
made objects often have well-defined features such as edges, but features on natural
shapes, such as the wrist bones shown in Figure 1, are more subjective. Furthermore,
such shapes can have subtle variations, the importance of which may not be obvious.

We aim to detect subtle shape features in a robust way with a fully automated
process. The types of features we expect to be useful are peaks, pits, ridges, and val-
leys. Important features may be of various sizes within one object. These features may
or may not be unique, as long as there are enough features to resolve any ambiguities
during shape matching.



Fig. 1. Bones making up the human wrist. Natural objects have subtle shape variations that are
challenging to characterize.

Previous approaches to local surface matching have either focused on man-made
objects, where features tend to be more well-defined, or required some type of user
interaction to select features. Manual selection of corresponding features and subjective
determination of the difference between objects are time consuming processes requiring
a high level of expertise. In contrast, our approach is entirely automatic.

Several two-dimensional techniques have been developed for medical imaging, im-
age analysis, and computer vision. However, advances in 3-D scanning capability are
providing ready access to 3-D data. In order to make effective use of this data, more
advanced analysis methods, including automated feature detection, are required. It is
desirable for feature detection to be consistent, robust, independent of the mesh reso-
lution, and relatively insensitive to noise. In addition, we would like to eliminate the
need for user interaction during the process, as well as dependence on parameter tun-
ing. On the other hand, we do not require detection of every feature (indeed, we cannot
even define every feature). Rather, we wish to find some set of geometrically interesting
regions that is sufficient for shape matching tasks.

1.1 Approach

In this paper we present a feature detection algorithm based on the Curvature Map, com-
bined with a robust segmentation approach in a multi-scale framework. The curvature
map at a point represents shape information for the point and its surrounding region.
A min-cut/max-flow graph cut algorithm, popular for image segmentation tasks, is em-
ployed to identify features at various scales. Results from multiple cuts are combined in
a novel manner to produce a final feature set. The multi-scale approach eliminates the
need for user interaction, and for tuning parameters based on a particular application.

The proposed algorithm is robust to noise and mesh variations. The process is au-
tomatic, with no user controlled parameters. We demonstrate the algorithm on several
shapes represented by triangular meshes. These shapes include a test shape with and
without noise, bones from the wrist, data from face scans, and the Stanford bunny. The
features detected represent a reasonable sampling of the interesting shape regions oc-
curring in the meshes. We show that with curvature maps we can extract meaningful
features in a robust way.



Section 2 focuses on related work in object recognition, feature detection, and seg-
mentation. In Section 3 we discuss curvature maps, and the local shape property to
which the min-cut/max-flow graph cut algorithm is applied. Section 4 gives the details
of the feature detection algorithm, the graph cut parameters, and the multi-scale ap-
proach. Results for various shapes, and conclusions and possible areas for future work,
are presented in Sections 5 and 6 respectively.

2 Related Work

There are three main areas of research related to this work, (1) shape representations
or signatures, (2) feature segmentation, and (3) multi-scale approaches to thresholding.
Object recognition, correspondence, and registration often rely on similarity measures
to quantify the similarity or dissimilarity between objects by computing distances be-
tween shape representations, such as sets of points, feature vectors, histograms, signa-
tures, or graph representations. A number of these shape representations have grown
out of image analysis for range data [1, 2] or medical images [3].

Graph representations, such as skeletons [4, 5] and multi-resolution Reeb graphs [6],
like algorithms based on point sets [7–12], can be useful for computing similarity and
registration. But these methods are primarily global rather than local and do not identify
local features of interest. Often, they are also sensitive to the distribution of the mesh
points.

Several signatures have been defined for shape matching. Signatures may be global
or local, and provide a compact representation that results in more efficient comparison
at the expense of their ability to discriminate shape. Methods used for shape retrieval,
such as shape distributions [13], spin images [14], and spherical spin images [15], tend
to be global measures, and generally provide limited discrimination between similar
shapes.

Signatures of a more local nature include statistical signatures [16] and shape con-
texts [17, 18], but the use of local point-to-point distances and angles, and sampling of
points respectively, limits the suitability of these methods for detailed shape compari-
son. The point fingerprint [19] is a signature made by projecting concentric geodesic
circles to a tangent plane, and selecting one of the resulting contours based on an ir-
regularity measure. Shape similarity is computed by comparing corresponding normals
and contour radii along each contour. A surface curvature signature [20] is defined that
relies on high curvature feature points. Unlike these approaches, we are looking for
subtle shape differences that require more than signatures just at ‘interesting’ points.

For this work, we use the Curvature Map [21] as our shape representation. By in-
corporating information over a larger region of the surface, the curvature map is more
stable, and better represents the local shape around a given point on the object. It is also
easily adapted for a multi-scale approach, as will be described in Section 4.

Shape decomposition methods for 3-D volumes have been developed based on se-
mantics [22], topology [23, 24], and morphological tools [25]. However, volume de-
composition provides volumetric features rather than surface features, and also is only
applicable to closed objects.



Segmentation identifies local regions of an object. A number of segmentation meth-
ods use curvature, particularly the sign of the curvature [26, 27], isosurfaces and ex-
treme curvatures [28], or watersheds of a curvature function [29, 30]. Other researchers
have developed curvature-based methods to identify salient features using local sur-
face descriptors [31], which build high level features from non-trivial local shapes, and
center-surround filters with Gaussian weighted curvatures [32]. However, these seg-
mentation methods do not yield the types of features we are interested in for shape
matching.

Feature regions can also be extracted based on critical points (peaks, pits, and
passes) and associated ridge and valley lines. In [33], smoothing [34] was required as
a preprocessing step. Peak (pit) areas surrounded by valley (ridge) cycles then provide
the candidate feature areas which were selected interactively for their work. The uncer-
tainty as to an appropriate amount of smoothing and the narrow definition of a feature
are drawbacks to this approach.

Graph cut algorithms have been used to segment images [35] and medical datasets
[36, 37]. They are effective at assigning the vertices of a graph to either a feature (fore-
ground) or background set, based on graph properties such as the gradient of the image
intensity. Some of these methods employ an interactive step, where the user identifies
feature and background seed points, to guide the algorithm to the objects that are to be
separated. We treat our mesh as a graph and apply the graph cut algorithm described in
Section 4.1, and identify features based on the resulting segmentation.

Several techniques have been used to either avoid the need to select parameter val-
ues and thresholds, or to automate the selection process. One approach is to use the
uniqueness of features [38] to determine matching thresholds, but this method has lim-
ited applicability in cases where uniqueness cannot be assumed, for example, where
several features may be very similar or even identical. One can also check the quality
of the match [39] to pick the best threshold. A similar multi-scale approach [40] has
been applied to medical image analysis, with classification based on the sign of mean
and Gaussian curvature. In addition, multi-step algorithms have been used successfully
with curvature based registration, where an initial coarse computation is followed by a
second refinement step. Our method combines such a multi-scale approach with a two-
step process in order to eliminate the need for user selection or tuning of parameters.

3 Local Shape Property

The basic feature shapes we are looking for include the peak, pit, ridge, and valley. The
common link between these features is the dependence on the magnitude of the mean
curvature. In order to identify these features, we need some measure of the likelihood
that a vertex should be classified as belonging to one of these features. This measure
needs to incorporate information about the neighborhood around the vertex, as well as
at the vertex itself. The curvature map [21] provides this context.

In order to calculate the curvature map, we first need to calculate the curvature
at each of the mesh vertices. Because we can expect object scans to contain some
amount of noise, we utilize a quadric fit of a two-ring neighborhood, based on a nat-
ural parameterization [41]. For a vertex p, the 1-D curvature map, Kmap(p), is de-



Fig. 2. The 1-D Curvature Map is define by a mean and a Gaussian curvature curve. These curves
are shown here for two sample vertices, A and B. The distance can be considered as expanding
concentric rings as shown on the right, with the curvature value found by averaging the curvature
values in the associated ring.

Fig. 3. Feature Detection Test Surface. Left: Surface shape with peaks, pit, ridge, and valley. Cen-
ter: Mean curvature scalar function. Right: Features highlighted by selecting a function threshold.
With the proper threshold, this function can highlight useful features, however, the threshold must
be found by experimentation.

fined by two curves representing the average mean and Gaussian curvature as functions
of distance from the vertex. We will refer to these curves as Mean(Kmap(p)) and
Gauss(Kmap(p)) respectively. The curvature maps for two sample vertices are shown
in Figure 2. We define our local shape property S as

S(p) =
∫ R

0

Mean(Kmap(p))(r)dr



where R represents the radius corresponding to the maximum feature size. A test sur-
face, the local shape property, and features resulting from applying a threshold to S are
shown in Figure 3.

We also considered functions based on the Gaussian curvature component of the
curvature map and combinations of mean and Gaussian curvature, but given a suitable
threshold, the mean curvature function gave the most consistent identification of the
features in the test case. This is due to the primary relationship of these features to
the mean curvature. We also experimented with the range over which the curves were
integrated by finding the sign changes in the function value, but these variations did not
improve the ability to detect features.

Although this local shape property often highlights the expected features, finding
an appropriate threshold requires manual adjustment, and the results still depend on the
curvature map radius R. In addition, no single threshold could extract both the positive
curvature features (peak and ridge) and the negative curvature features (pit and valley).
These factors motivated our search for an improved feature detection approach.

4 Multi-Scale Feature Detection

We combine our local shape property with the min-cut/max-flow graph cutting tech-
nique of Boykov and Kolmogorov [35], to create a multi-scale approach for feature
detection. The min-cut/max-flow algorithm operates on a graph with weighted edges,
along with weights for edges that are added to connect the graph vertices to a feature
node and a background node. The algorithm then finds the minimum cost set of edges
to delete, such that there remains no path from the feature node to the background node.

The primary benefit of the graph cut algorithm is its efficiency, and the compact
boundary produced. We note that when we run the graph cut algorithm with a range of
radii for our local shape property, different features may be identified. So our goal is to
run the graph cut multiple times, and extract the most significant features overall.

The graph cut algorithm is applied first to the absolute value of our shape property.
For the default graph cut weights, only the most prominent features are detected. To
detect less prominent features, we multiply the weights by a scale factor, which takes on
a range of values. Since the larger of the positive or negative shape property magnitudes
may dominate the absolute value graph cuts, we also perform graph cuts separately on
the positive and negative values of the local shape property. So we apply the graph
cut technique three times at each scale in order to make sure we capture key positive
and negative curvature features. This results in three categories of graph cuts: absolute
value, positive, and negative.

The variations of curvature map radii and scale factors for the three graph cut cate-
gories generate a large number of possible feature sets. In order to simplify the process
of extracting a master feature set from this data, we first count the number of times
each vertex is identified as part of a feature in each of these categories. Then we run the
graph cut algorithm on the normalized frequency counts, again varying the scale factor.
This yields a smaller set of features that are then merged to create the master feature
set. This process is shown in Algorithm 1.



Algorithm 1 Multi-Scale Feature Detection
Read Curvature Map (Kmap) for Mesh M
for Kmap radius R from Rmin to Rmax do

Compute S as the integral of the Kmap mean curvature component from 0 to R
for a range of weight factor α do

Create graph cuts Cabs, Cpos, Cneg on the absolute, positive, and negative values of S
Identify the features in Cabs, Cpos, Cneg

for each vertex v in Mesh M do
Count feature occurrences Nabs, Npos, Nneg in Cabs, Cpos, Cneg

end for
for each edge do

Count how many times both endpoints occur in the same region
Note: Used to generate edge weights for the later max-flow/min-cut runs

end for
end for

end for
for a range of weight factor α do

Create graph cuts Cabs, Cpos, Cneg from normalized counts Nabs, Npos, Nneg

Identify and merge features from Cabs, Cpos, Cneg into composite feature sets
Gabs, Gpos, Gneg

end for
Merge Gneg and Gpos into Gabs to create the Master Feature Set G

Fig. 4. The min-cut/max-flow graph cutting algorithm finds an optimal separation of the vertices
of a mesh into a feature group and a background group. The cut is based on weights assigned
to the mesh edges (solid lines) and to edges connecting the graph vertices to the feature and
background nodes (dotted lines).

4.1 Graph Cut Parameters

In order to run the graph cut algorithm, we need to assign weights to the mesh edges
and to connections from the mesh vertices to a ‘feature’ node and a ‘background’ node,
as shown in Figure 4. These weights, given in Table 1, represent the cost of breaking the



Table 1. Graph Cut Weights

Shape Property Based Feature Frequency Based
Edge Weight(cost) for Weight(cost) for
{p, q} E1{p, q} {p, q} ∈ Edges E2{p, q} {p, q} ∈ Edges

{p, F} − log(1− S(p))
√

α ∀p − log(1−N(p))
√

α ∀p
{p, B} − log(S(p))/

√
α ∀p − log(N(p))/

√
α ∀p

E1 = exp
(
− (S(p)−S(q))2

2(dist(p,q)σ)2

)
1

dist(p,q)
if S(p)S(q) < 0, 1

dist(p,q)
otherwise

E2 = exp
(
−NT−NS

NT

)
where NT is the number of cuts, and

NS is the number for which Featurep = Featureq

F and B are the feature and background nodes respectively, p, q are mesh vertices
α is the scale factor for the feature node weights
S(p) is the local shape property value at p, limited to ε ≤ S(p) ≤ 1− ε
N(p) is the normalized frequency count at p

Fig. 5. Graph cuts generated by the min-cut/max-flow algorithm on the local shape property for
three graph cut categories: absolute value (left), positive (center), and negative (right). The ab-
solute value graph cut picks up the peak and pit features, while the valley is only found in the
negative graph cut and the ridge is only found in the positive graph cut.

edge in order to separate the graph vertices into the feature and background sets. Note
that the vertices within a set need not form a single contiguous region of the graph.

Once we have created the graph cut, we search for contiguous groups of vertices in
the feature set of the graph cut. These contiguous groups of vertices are our features.
Figure 5 shows features extracted from selected graph cuts of a test surface.

4.2 Multi-Scale Parameters

The two parameters that are varied are the curvature map radius R and the scale factor
α. R is varied from small to large, with the size of the largest region based on the radius
Rmax used for the original curvature map calculation. Rmax is assumed to be large
enough to capture the largest desired feature. For example, on our human face scans,
we use a maximum radius of about two inches. Smaller radii are defined by successively



Fig. 6. Effect of the scale factor α on features identified using the Min-Cut/Max-Flow graph
cutting algorithm. Representative cuts from the negative of the local shape property are shown.
As α increases, more features are detected, and existing features become larger. At larger α the
saddle region at the base of the peaks is detected.

Fig. 7. Effect of the curvature map radius R on features identified using the Min-Cut/Max-Flow
graph cutting algorithm. As R changes, different features are detected, and some features merge.

scaling by 1/
√

2. For our cases, using eight levels was sufficient to make the minimum
R comparable to the shortest edge of the mesh.

The weights for the connections to the feature node are scaled by
√

α, while the
connections to the background node are scaled by 1/

√
α. We determine α by trial and

error. We first decrease α until we get only one group. Then we increase α until the
number of groups reaches a peak. We then take uniformly spaced values for α in this
range. For our examples, we use ten divisions. For these examples, 8 Kmap radii cross
the 10 scale factors results in 80 graph cuts for each category in the first step, with an
additional 30 graph cuts in the second step, for a total of 270 graph cuts. Fortunately,
the graph cut algorithm is very efficient, with the 270 graph cuts on a 10,000 vertex
mesh taking less than 40 seconds on a 2.8GHz Pentium 4 processor.

Figure 6 shows the groups produced for selected scale factors for the negative graph
cuts of our local shape property with a curvature map radius of 3.8. As the scale factor is
increased, individual features tend to get larger, and new features may show up. Changes
to the feature set as the curvature map radius R is increased are shown in Figure 7. The
feature frequency counts are shown in Figure 8.



Fig. 8. Feature counts for the absolute value (left), positive (center), and negative (right) graph
cut categories. Maintaining separate frequency counts for the three graph cut categories allows
extraction of more well-defined features.

4.3 Group Merging Criteria

Algorithm 2 Merging Feature Set A into Feature Set B

Require: Feature Sets A and B on Mesh M
for each feature Fi in Set A do

Determine how many features n in Set B overlap Fi

if n = 0 then
Add Fi as an additional feature in Set B

else if n = 1 then
Take the union of Fi with its overlapping feature in Set B

else
Ignore the feature Fi

end if
end for

In order to merge feature groups together, we use a simple greedy approach as
shown in Algorithm 2. When combining cuts from progressively larger source weights
to form composite feature sets, the groups tend to grow, but without allowing neighbor-
ing groups to merge. This makes sure all of the features do not get merged together, as
might occur for a very large scale factor. The same algorithm is applied when merging
the composite feature sets for the absolute value, negative, and positive portions of the
function. The composite feature sets for each of the function variations, and the final
feature set made by combining them, are shown in Figure 9.



Fig. 9. Composite feature sets for the absolute value, positive, and negative graph cuts, and the
master feature set made by merging them.

5 Results

Figure 10 shows the test surface with Gaussian noise added. In spite of the noise, we
get a very similar feature structure to that of the case without noise shown in Figure 9.

Figure 11 shows features for several bone meshes with fairly subtle features. Note
the similarity of the feature layout for Ulna A (View 2) and Ulna B in spite of a signifi-
cant difference in mesh resolution and being from different subjects.

Figure 12 shows feature detection applied to a low resolution scan of a human face.
The coarseness of the mesh has a smoothing effect that eliminates many details. It also
highlights the benefit of running the absolute value, positive, and negative graph cuts
to identify features for the master set that would be missed otherwise. In Figure 13 we
compare our feature detection method with segmentation based on the signs of the mean
and Gaussian curvature for a higher resolution human face. Even after smoothing the
curvature data, the segmentation on the left shows quite a bit of noise. This is improved
by setting a zero threshold so that large regions of low curvature are separated from the
higher curvature features, as shown in the center segmentation. However, the resulting
features depend strongly on the amount of smoothing applied and the zero threshold,
and are still less well-defined than the master feature set shown on the right.

Features for the Stanford bunny are presented in Figure 14. While this case produced
a number of very small features, the larger feature regions, such as in the ears, face,
feet, and tail, seem to be features that could be useful for shape matching. Because the
features can be ordered by strength, weaker features will only be used for tasks such as
shape matching if there are not enough strong features detected.

6 Conclusions and Future Work

We have presented a two-step multi-scale feature detection approach that uses a local
shape function based on the Curvature Map. It employs an efficient min-cut/max-flow
graph cutting algorithm and greedy algorithm to merge feature sets. The method is
robust with respect to noise, and consistently yields a reasonable set of features. Most
importantly, there is no user interaction or parameter tuning required.



Fig. 10. Test case with Gaussian noise added. The function and final feature set are similar to the
test case without noise, especially for the strongest features.

Fig. 11. Master Feature Sets for selected bone meshes. The Ulna is challenging due to the limited
number of pronounced features and the significant difference between the scales of the features.
Similar features were detected for Cases A and B even though the resolution of the meshes is
very different. Reasonable features were also identified for the Pisiform (second from right) and
Capitate (far right).

Fig. 12. Features detected on a Cyberware low resolution female face scan. The absolute value
graph cuts pick up the nose chin and hair features, while the negative cuts detect the eyes. In spite
of the smoothness of the mesh, the master feature set captures the prominent features of the face.



Fig. 13. Comparison of graph cut feature detection with sign of curvature segmentation for a high
resolution Cyberware face scan. Before coloring by the sign of Gaussian and mean curvature, the
curvature values were smoothed. The segmentation in the center uses a zero threshold to separate
low curvature regions from higher curvature features. However, the master feature set provides
more well-defined features.

Fig. 14. Features detected for the Stanford bunny. Several features, such as the large sections of
the ears and the features in the face region, are very intuitive.

The method could benefit from alternate algorithms for merging feature sets. The
greedy approach works fairly well, but may cause some over-segmentation, since it does
not allow two features to coalesce into one, which might be desirable in some instances.

Because the local shape property is based on the integral of mean curvature, it de-
tects primarily higher curvature features. We will look at adding the capability to detect
flat or nearly flat regions, although these are less useful for identifying shape similarity.
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