
Online Submission ID: 225

Intuitive tools for camera manipulation

Category: Research

Figure 1:Visual help: The user hovers over a handle on the widget. The widget, along with the scene, animate to demonstrate how changing
the handle changes the tool. Left: Rotation. Right: Pan.

Abstract

We present an image-space camera manipulation widget that sup-
ports visualization of the relationship of the camera with respect to
the scene. The form of the widget presents the user with natural
affordances for camera manipulation. Visual aids such as ghosting
of the scene and preview animations are used to acquaint novice
users with the functions of different parts of the widget. Mouse
gestures are used to transition between different perspective views
of the scene in an intuitive way. Finally, we provide a novel method
for visualizing camera bookmarks.

Keywords: Camera control, Projection, Perspective

1 Introduction

Artists use the idea of linear perspective to translate the three di-
mensional world around them onto the two-dimensional surface of
a painting. Objects in the picture are systematically foreshortened
as they recede into the distance and orthogonal lines converge to
one or more vanishing points. Note that the convergence of the
lines depends entirely on the relative position of the camera to the
viewed scene. When creating a projection, the artist often simpli-
fies the geometry of the scene into sets of simple lines that represent
these vanishing points. We propose that the visualization of these
geometric relationships results in a more intuitive camera manipu-
lation paradigm.

Most graphics packages treat the camera as a first-order object in
the scene. The camera is treated as a separate, independent object
in the scene with its own position and orientation. Camera manip-
ulation consists of placing the camera in the scene, either using a

“through-the-lens” metaphor or by manipulating a pictorial repre-
sentation of the camera in another window.

In contrast, our system explicitly visualizes the camera-scene re-
lationship in the image plane. The user then manipulates this rela-
tionship to change the camera projection. This allows the camera
operations to be defined with respect to any point in the scene, and
also provides information about how a particular camera manipula-
tion will affect the current projection.

Artists often simplify complex scenes, representing them as
lines, points and curves, because these are easier to visualize. Our
widget mirrors this more intuitive approach by presenting the user
with simplified geometric proxies of objects in the scene. The user
then manipulates these geometric proxies to change the object’s
projection.

A full camera has 11 degrees of freedom, six for positioning and
orienting the camera and 5 for controlling the projection [Michener
and Carlbom 1980]. When manipulating a geometric proxy, not
all 11 parameters of the camera have to be changed at once, nor
do all desired projection changes map to a single parameter. For
example, if the user moves the camera along the optical axis the
perspective distortion changes, but the portion of the scene that is
visible also changes. Therefore, it makes sense to change the view
angle simultaneously to keep part of the scene the same size (see
Figure 3).

To acquaint novice users with the functions of the various han-
dles on the widget, we use “just in time” animations. These ani-
mations act as preview animations indicating the possible changes
that can be made to a camera if a particular handle is selected (see
Figure 1).

Finally, our widget allows users to save cameras and switch back
to them at a later time. We refer to these saved cameras as “book-
marks”. We provide two methods for visualizing the position of
these camera bookmarks relative to the current camera in the 2D
image plane.

1.1 Vision Of Approach

In this paper we specify a method of visualizing both the relation-
ship of the camera with objects in the scene and the state of the
camera itself. Using our method we can perform both these func-
tions while staying in the 2D image plane where all the camera ma-
nipulations take place. To accomplish this we visualize the camera
using the projection of a cube in the scene. The cube is a geometric
proxy for some or all parts of the scene, and is a familiar piece of

1

Online Submission ID: 225

One-point: Two-point:

Three-point:

Figure 2:Vanishing points: One, two and three-point perspective.
The number of vanishing points depends on the orientation of the
cube relative to the camera.

geometry that can be used to visualize changes in projection easily.
The cube can be viewed from three different perspective views

(Figure 2). Each perspective view presents the user with a dif-
ferent subset of the changeable camera parameters that correspond
naturally to how that perspective view can be changed. To further
clarify what different handles on the widget do, we provide the user
with visual feedback indicating how the scene changes when the
widget changed. This visual feedback takes the form of ghosting
of the scene with the new camera (see Figure 1). Preview anima-
tions of the several changes that the cube would go through from
the current camera to the final camera also gives the user an idea
of the changes that would be made to the camera without actually
changing the current camera.

To make manipulation between perspective views of the cube
simple we use a mouse gesture that allows the user to “spin” the
3D cube from one view to the next. This is also cued visually using
ghosting.

Finally, we extend the idea of visualizing a single camera in the
image plane to visualizing multiple, bookmarked cameras.

1.2 Contributions

This paper presents an intuitive widget that allows visualization of
the relationship of the camera with the scene and the state of the
camera, entirely in the 2D image plane. Visual aids such as ghosting
of the scene and preview animations are used to acquaint the user
with the functions of different parts of the widget. Gestures are used
to transition between different perspective views of the scene in an
intuitive way. Finally, we provide a novel way to visualize camera
bookmarks.

1.3 Overview

We cover previous work in Section 2. Section 3 describes the wid-
get itself, and how the user interacts with it. Section 4 describes the

Figure 3:Camera Dolly And Zoom With Focal Planes:A camera
dolly and zoom is accomplished by zooming out/in while dollying
in/out to keep the size of the cube the same. The depth of the focus
point can be changed by sliding a focal plane through the scene.

visual aids available for novice users. Finally, Section 5 describes
bookmarks.

2 Related work

For mouse-based systems, camera control paradigms fall roughly
into two categories, camera-centric and object-centric. In the
camera-centric paradigm, operations are applied to the camera as
if it were a real object in the scene. This mirrors camera placement
in the real world, and many of the camera operations (dolly, pan,
and roll) reflect that. The external parameters, position and orienta-
tion, can be specified either “through the lens”, or by manipulating
a pictorial representation of the camera in a second window. The
internal camera parameters, with the exception of focal length, are
changed through textual input.

In the object-centric paradigm, the camera is centered on an ob-
ject and the viewpoint is rotated relative to the object (as if there
were a virtual trackball around the object [Hultquist 1990; Hen-
riksen et al.]). The camera can also be zoomed in and out. This
paradigm is useful when there is a single object in the scene (or one
object of importance) and the user is simply choosing a direction
from which to view it.

Three or six degrees of freedom devices permit other inter-
esting navigation techniques [Bowman et al. 1997], such as the
palm-top world [Stoakley et al. 1995], the “grab and pull” ap-
proach [Poupyrev et al. 1996] and virtual fly-throughs [Wloka and
Greenfield 1995]. The latter can also be used in mouse or keyboard-
based systems if the camera’s movement is restricted to a well-
defined floor plane (most first-person shooters use this approach).

An alternative approach to directly specifying the camera is
to use image-space constraints [Blinn 1988; Gleicher and Witkin
1992]. In this approach, points in the scene are constrained to ap-
pear at particular locations, or to move in a specified direction, and
the system solves for the camera parameters that meet those con-
straints.

The recently-introduced IBar [Singh et al. 2004] is, in some
sense, a specialization of the constraint approach, where the points
are the points of the edge of a cube. Like the widgets presented
here, the IBar is a screen-space widget where changing the widget
changes one or two camera parameters. The IBar, however, maps
all of the camera parameters to a single widget, which can be very
confusing to a novice user.

In addition to being simpler, our technique also allows the user
to pick any arbitrary rotation center in the scene, even one that is
not tied to the surface or center of an object. Similarly, we provide
a method for visualizing what part of the scene will remain fixed
during a perspective distortion manipulation (Section 3.1).

2

Online Submission ID: 225

Figure 4:User’s View of the Cube widget:The widget is initially
viewed in a one-point perspective view. A camera pan and zoom
is performed before switching to a two-point perspective view. The
center of projection is changed in this view. Finally in a three-point
perspective view, the camera is rotated about the focus point.

3 User’s view

The Cube Widget is a cube rendered in 1-point, 2-point, or 3-point
perspective (Figure 2). It is either centered in the scene or attached
to an object in the scene. Each part of the Cube Widget performs
a specific camera operation. To avoid burdening the user with re-
membering all of the functions, we provide visual feedback indicat-
ing the changes that could be made to the current camera. As the
user hovers over any part of the widget, an animation of the wid-
get and scene changing in correspondence to that handle change is
shown.

In order to move between the different types of perspective views
mouse gestures are used. The user can grab and pull a part of the
cube to switch to a different perspective view.

3.1 Perspective distortion

The cube widget can be used to control perspective distortion in
the scene. Perspective distortion is function of the distance of the
camera eye point to the object in question (dolly in). Unfortunately,
changing the camera distance also changes the size of the object in
the scene. To counter act this, we need to simultaneously change the
camera zoom to keep the object the same size [Singh et al. 2004;
Grimm et al. 2004]. This allows us to keep objects at a specific
distanced along the Look vector the same size in the image plane.
To visualize this distance, we draw a plane at the given depth. The
position of this plane can be changed by moving a slider along the
receding edges of the cube (Figure 3).

We extend this idea to the 2-point perspective rendering to con-
trol which objects will stay in the same place when changing the
center of projection. In 3-point perspective, we use three focal
planes, which together let the user specify an arbitrary rotation point
in the scene.

Figure 4 shows construction of a camera view using the cube
widget. The first five frames shows the manipulating the cube wid-
get in 1-point and 2-point perspective views.

3.2 1-Point Perspective

The 1-point perspective view allows for camera zooming, panning,
and perspective manipulation. The operation that is performed de-
pends on the part of the widget which has been selected. Figure 5

Camera
Pan

Camera
Zoom

Camera Dolly +
Zoom

Change
Depth Of
Camera
Focus Point

Figure 5:1-Point Perspective Widget:The corners of the widget’s
inner face are used for changing the perspective distortion while the
corners of the outer face are used for camera zoom. The mid-points
of the widget sides are used for panning the camera. The slider
along the receding edges is used to change the depth of the focal
plane. The Gesture Spot in the center of the cube is used to move
between different perspective views. If the spot is dragged toward
the right the view switches to a 2-point perspective. If it is dragged
towards the left the view switches to the 3-point perspective.

shows the structure of the 1-point perspective Widget. In perspec-
tive manipulation mode, the front plane of the cube represents the
fixed size plane.

3.3 2-Point Perspective:

The 2-point perspective view allows for camera zooming, dolly in,
perspective distortion, panning, and changing the center of projec-
tion. When the center of projection is changed, the camera must
be panned in the opposite direction to keep the scene from mov-
ing [Singh et al. 2004]. The focal plane determines what depth will
be stationary.

3.4 3-Point Perspective:

Figure 7 shows the structure of the 3-point perspective widget. Us-
ing the 3-point perspective the user can rotate and pan the camera.
The point about which the camera is rotated is the intersection of 3
focal planes aligned along the axes of the cube. Sliding these planes
along their respective axes will change the point about which rota-
tion takes place. The user can snap the widget to either the center
or a point on the object, then adjust the rotation center.

The specified rotation can be either a virtual trackball [Henrik-
sen et al.] or the standard 3-axis rotation. The virtual trackball is
positioned around the cube, with the cube vertices on the sphere.

4 Visual Aids

Visual aids ease novice users into using the Cube Widget without
the burden of remembering the functionality of a large number of
handles. Our visual aids are similar to the idea of tool tips, except
that we use animations of the widget and the scene to visually cue
what a particular mouse action will do.

The animation is shown as a sequence of “ghosted” images tak-
ing the widget from its current state to the new one (see Figure 1).

3

Online Submission ID: 225

Camera
COP

change
Camera
Pan

Camera
Dolly

Camera
Zoom

Zoom +
Dolly

Change Depth Of
Camera Focus Point

Figure 6:2-Point Perspective Widget:The center of the widget is
used for center of projection changes. The corners can be used for
either camera zoom only, camera dolly only, or both camera zoom
and camera dolly. The slider is used to change the fixed translation
focal plane. The mid-points of the sides are used to pan the camera.
The Gesture Spot is used to switch to 1-point (left) and 3-point
(right) perspective views.

Depending on the action being demonstrated, the scene change may
be ghosted along with the widget (with the scene rendered using the
changing camera).

Ghosting animations are used to indicate the effect of changing
a handle, a slider, or “spinning” the widget using the Gesture Icon.
For each handle we choose a canonical mouse movement direction
and use that to generate a sequence of camera changes. The cursor
is animated along with the scene and the widget. The Gesture Icon
animation simply animates the cube widget itself, again with the
cursor to indicate the mouse direction.

4.1 Implementation

The cube widget animations can be generated on the fly with the
widget simply drawn on top of the scene. For the scene animations,
we render the changed scene into the back buffer and then copy the
image into a texture map. This texture is then alpha-blended on top
of the rendering of the current scene. The texture images need not
be at the same resolution as the full image; in fact, lower resolution
images make it easier to visually distinguish the original scene from
the ghosted one.

5 Bookmarks

It is very useful to be able to save cameras and snap back to them
at will. For example, when modeling a surface, a user might book-
mark a handful of orthogonal views and close-ups of complex ge-
ometry. An animator might also use bookmarks to start laying out
an animation sequence. In both of these cases, we need to provide
the user with a method for quickly searching through existing cam-
eras. Although the user could simply create a text list, naming each
camera, we believe that a visual search mechanism is more useful.

In our system we display bookmarks as icons that contain a sim-
plified image of the scene. The icons contain visual cues about the
relative position of the bookmarked camera with respect to to the
current camera. The bookmark icons are placed around the bound-
ary of the scene (see Figure 10). We employ two placement algo-
rithms, which the user can switch between. In the first placement

Center of
rotation

Rotation about
right vector

Rotation
about up
vector

Rotation
about
Look vector

(Shift key rotation)

Pan

Virtual trackball

Figure 7:3-Point Perspective Widget:The midpoints of the sides
of the widget are used for panning the camera. The corners change
the orientation.

Figure 8: Changing Point Of Rotation in 3-point Perspec-
tive:The second frame shows the camera being rotated about the
center of the cube. To change the center of rotation the focal planes
are slid along the axes of the cube. The final frame shows rotation
of the camera about the new center of rotation.

mode, the user simply places the icon in the boundary. In the sec-
ond placement mode we automatically determine the 2D location
based on the relative relationship of the bookmarked camera to the
current camera. This second mode can be used to explore a scene
by navigating through “nearby” bookmarks.

5.1 Implementation

To make the bookmark icons easier to see, we render the scene
without textures, under a bright diffuse light, and highlight the sil-
houette edges [Gooch et al. 1998]. As the user mouses over the
bookmark, the bookmarked camera’s image is ghosted on top of
the current camera.

To avoid continually consuming substantial screen real estate
to display the bookmarks, we implement a re-sizable border. As
the user moves into the border it re-sizes to display the icons, then
shrinks again as the mouse moves back into the screen center, with
a dead-zone in-between to prevent excessive border re-sizing.

Automatic placement: The location of the bookmark in the
boundary indicates the relative position of the bookmark’s eye point

4

Online Submission ID: 225

Figure 9:Ghost Gestures:As the user hovers over part of a Ges-
ture Icon, the future perspective view of the cube is shown as an
animation.

with respect to the current camera. This location is found by pro-
jecting the eye point onto the planes defining the view frustum.
Points behind the current eye point are projected onto the inverse
view frustum, then their 2D positions are inverted (objects behind
the camera show up upside-down in the image plane).

The size and outline of the bookmark provide additional infor-
mation about the distance of the eye point to the current optical axis
and the relative orientation of the two cameras. We define a mini-
mum and maximum size for the icons. We then find the minimum
and maximum projection distances for all of the bookmarks and
map the icon sizes appropriately.

The left and right outlines of the icon are scaled byl and colored
c by the orientation of the bookmark’s LookLb vector with respect
to the current camera’s LookL vector:

t =
(
(< L,Lb > +1.0)/2

)3

c = (1,0,0)t +(0,0,1)(1− t)
l = tlmax+(1− t)lmin

where lmin, lmax are the minimum and maximum outline widths.
Similarly the top and bottom outlines are determined by the rela-
tive orientation of the two camera’s Up vectors. If the bookmark’s
eye point is behind the viewer, then we set the color to grey.

6 Implementation

Details of simultaneously changing the camera parameters for per-
spective distortion can be found in [Grimm et al. 2004] . Letd
be the focus distance. The cube is draw at distanced along the
look vector. The orientation of the cube is a composition of the in-
verse rotation of the camera matrix and the rotation matrix of that
perspective. The cube is scaled byd tanθ/2, whereθ is the zoom
angle. In 1-point and 2-point perspective we offset the cube along
the look vector bys to place the front of the cube at the fixed focus
distance. To center a camera around an object, the calculation is the
same except we place the cube at the object point and we scale the
cube to match the object scale.

Figure 10:Bookmarking: A camera can be “bookmarked” at any
point in time. The upper left figure shows an existing set of book-
marks placed by the user along the edge of the screen. The other
two images demonstrate automatic placement. The lower right im-
age is blow up of two of the icon images.

7 Conclusion

We have presented a camera manipulation widget that provides in
screen visual feedback to the user regarding the state of the current
camera projection. This widget allows the novice user to explore
the full space of camera projection. Each perspective rendering
presents the user with a subset of the camera parameters that can
be easily explored. Visualization of bookmarks in the image plane
extends the image space metaphor to multiple view points.

References

BLINN , J. 1988. Where am i? what am i looking at? InIEEE Computer
Graphics and Applications, vol. 22, 179–188.

BOWMAN , D. A., KOLLER, D., AND HODGES, L. F. 1997. Travel in im-
mersive virtual environments: An evaluation of viewpoint motion control
techniques.IEEE Proceedings of VRAIS’97, 7, 45–52.

CARLBOM , I., AND PACIOREK, J. 1978. Planar geometric projections and
viewing transformations. InACM Computing Surveys (CSUR), vol. 10.

CHEN, M., MOUNTFORD, S. J., AND SELLEN, A. 1988. A study in
interactive 3d rotation using 2d input devices. InSiggraph, vol. 22, 121–
130. Proc. of Siggraph ’88.

COLE, R. V. 1976.Perspective for Artists. Dover Publications.

FOLEY, J.,VAN DAM , A., FEINER, S.,AND HUGHES, J. 1990.Computer
Graphics : Principles and Practice. Addison Wesley.

GLEICHER, M., AND WITKIN , A. 1992. Through-the-lens camera control.
In Siggraph, E. E. Catmull, Ed., vol. 26, 331–340. ISBN 0-201-51585-7.
Held in Chicago, Illinois.

GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A non-
photorealistic lighting model for automatic technical illustration.Com-
puter Graphics 32, Annual Conference Series, 447–452.

GRIMM , C., SINGH, K., AND SUDARSANAN, N. 2004. The ibar: A
perspective-based camera widget. Tech. Rep. 7, Washington university
in St. Louis.

HENRIKSEN, K., SPORRING, J., AND HORNBAEK, K. Virtual trackballs
revisited. InIEEE Transactions on Visualization and Computer Graph-
ics, vol. 10, 206–216.

5

Online Submission ID: 225

HULTQUIST, J. 1990. A virtual trackball. InGraphics Gems. 462–463.

M ICHENER, J. C., AND CARLBOM , I. B. 1980. Natural and efficient
viewing parameters. InComputer Graphics (Proceedings of SIGGRAPH
80), vol. 14, 238–245.

O’CONNOR JR., C., KIER, T., AND BURGHY, D. 1998.Perspective Draw-
ing and Application. Prentice Hall.

POUPYREV, I., BILLINGHURST, M., WEGHORST, S.,AND ICHIKAWA , T.
1996. The go-go interaction technique: Non-linear mapping for direct
manipulation in VR. InACM Symposium on User Interface Software and
Technology, 79–80.

SINGH, K., GRIMM , C., AND SUDARSANAN, N. 2004. The ibar: A
perspective-based camera widget. InUIST.

STOAKLEY, R., CONWAY, M. J., AND PAUSCH, R. 1995. Virtual reality
on a WIM: Interactive worlds in miniature. InProceedings CHI’95.

WLOKA , M. M., AND GREENFIELD, E. 1995. The virtual tricorder: A uni-
form interface for virtual reality. InACM Symposium on User Interface
Software and Technology, 39–40.

ZELEZNIK , R. C., HERNDON, K. P., AND HUGHES, J. F. 1996. Sketch:
An interface for sketching 3d scenes. InSiggraph, 163–170.

6

