

Online Submission ID: WUCSE-2004-32

WUCSE-2004-32 The IBar: A Perspective-based Camera Widget

Category: Research

Figure 1: Changing the perspective distortion of the scene.

Abstract

We present a new widget, the IBar, for controlling all as-
pects of a perspective camera. This widget provides an in-
tuitive interface for controlling the perspective distortion in
the scene by providing single handles that manipulate one or
more projection parameters simultaneously (e.g., distance-
to-object and lens aperture) in order to create a single per-
ceived projection change (increasing the perspective distor-
tion without changing the scene size). We demonstrate that
novice users more easily learn how to manipulate the camera
using the IBar.

CR Categories: I.3.5 [Computing Methodologies]:
Computer Graphics—Computational Geometry and Object
Modeling

Keywords: Camera control, Projection, Perspective, Ren-
dering

1 Introduction

Camera control for 3D rendering is a difficult problem. A
full perspective matrix [Michener and Carlbom 1980] has 11
degrees of freedom — 6 to control the position and orienta-
tion of the camera, and 5 to control the projection. Specify-
ing a perspective matrix with just a mouse and a keyboard
can be a challenging task. In this paper we present a single
screen-space widget that provides intuitive manipulation of
all of the camera using just the mouse (with optional key
modifiers). This widget changes pairs of parameters simul-
taneously (where appropriate) in order to present the user
with more intuitive controls.

Part of the difficulty of camera control is the complex
inter-relationships between the 3D objects in the scene, the
3D position and orientation of the camera, the internal cam-

Figure 2: A traditional Computer Graphics approach to
specifying a camera. Left: The camera in relationship to
the scene. Right: The perspective view. (Program shown is
Maya).

era parameters, and the final 2D scene layout. All of this
information is communicated to the user through the perspec-
tive rendering itself. This places a heavy cognitive burden
on the user, since they must build up a mental model of the
3D scene and the camera, along with a mental model of how
changing camera parameters affects the perspective render-
ing. To help users clarify the 3D relationships, many systems
provide additional renderings (usually the X, Y, Z axes), in
which a representation of the camera is displayed along with
the scene. The user can then manipulate this representation
to position and orient the camera, and even change internal
camera parameters (see Figure 2). Although this greatly fa-
cilitates placing the camera, it does little to illuminate the
2D qualities of the perspective projection itself.

For mathematicians, and most of the Computer Graphics
community, perspective projection is simply a 4 × 4 matrix
that projects a 3D scene into 2D, taking straight lines to
straight lines in the image plane and maintaining the depth
ordering. Artists, however, have a much more complex vo-
cabulary that qualitatively describes perspective projection
— they are primarily concerned with describing the visual
features of the projection in the 2D plane [Cole 1976; Carl-
bom and Paciorek 1978]. Figure 3 illustrates some of these
features. The terms 1,2, and 3 point perspective refer to the
number of vanishing points defined in the image; note that
this depends on the camera’s positional relationship to ob-
jects in the scene. The left and right vanishing points define a
horizon or eye line; changing the location of this line can dra-
matically change how the scene is perceived. When sketching
out a scene, artists simplify the objects in the scene, reduc-

1

Online Submission ID: WUCSE-2004-32

Vanishing point Horizon line

One point

Left vanishing point Right vanishing point

Two point

Left vanishing point Right vanishing point

To third vanishing point Three point

Figure 3: Terms used by artists to describe perspective pro-
jections. From: Perspective Drawing and Applications.

ing them to collections of lines, points and simple curves.
This allows them to visualize the primary vanishing points,
lines-of-sight, and horizon lines in the 2D plane.

Traditional camera manipulation techniques do not sup-
port this type of visualization — they instead support the
photographer’s approach to exploring the projection space.
A skilled photographer learns to “see” through the lens of
the camera, flattening out the scene in their mind’s eye and
evaluating it for its 2D aesthetics. Current graphics systems
allow the user to manipulate the camera as if it were held
in the hand. In this model, widening (or shrinking) the field
of view makes the objects in the scene smaller (or bigger).
Moving closer (or further) to the object does exactly the
same thing — except that it also changes the perspective,
i.e., , the vanishing points move.

In this paper we propose an alternative approach to the
camera specification problem that is more closely aligned
with the artist’s concept of perspective. We place a single
screen-space widget, called the IBar, into the image. The
shape of the IBar provides information about the current
vanishing points and horizon lines, and allows the artist
to manipulate those entities directly, rather than indirectly
through moving the camera, changing the field of view, etc.

Contributions: The IBar provides a natural interface for
manipulating the parameters of the camera that influence
perspective distortion. This supports dramatic camera af-
fects (Figure 1) that are currently difficult to specify because
they require simultaneous editing of several camera param-
eters.

We cover existing camera models first (Section 2). The
functionality of the IBar is described in Section 3. The cor-
responding equations are given in Section 5. We performed
a small, informal user study; the results are discussed in
Section 4.

2 Related work

For mouse-based systems, camera control paradigms fall
roughly into two categories, camera-centric and object-
centric. In the camera-centric paradigm, operations are ap-

plied to the camera as if it were a real object in the scene.
This mirrors camera placement in the real world, and many
of the camera operations (dolly in, pan, etc.) reflect that.
The external parameters, position and orientation, can be
specified either “through the lens”, or by manipulating a
pictorial representation of the camera in a second window.
The internal camera parameters, with the exception of focal
length, are changed through textual input.

In the object-centric paradigm, the camera is centered
on an object and the viewpoint is rotated relative to the
object (as if there were a virtual trackball around the ob-
ject [Hultquist 1990]). The camera can also be zoomed in
and out. This paradigm is useful when there is a single ob-
ject in the scene (or one object of importance) and the user
is simply choosing a direction from which to view it.

Three or six degrees of freedom devices permit other in-
teresting navigation techniques [Bowman et al. 1997], such
as the palm-top world [Stoakley et al. 1995], the “grab
and pull” approach [Poupyrev et al. 1996] and virtual fly-
throughs [Wloka and Greenfield 1995]. The latter can also
be used in mouse or keyboard-based systems if the camera’s
movement is restricted to a well-defined floor plane (most
first-person shooters use this approach).

An alternative approach to directly specifying the camera
is to use image-space constraints [Blinn 1988; Gleicher and
Witkin 1992]. In this approach, points in the scene are con-
strained to appear at particular locations, or to move in a
specified direction, and the system solves for the camera pa-
rameters that meet those constraints. The IBar is, in some
sense, a specialization of the constraint approach, where the
points are the points of the cube. However, unlike the con-
straint approach, changes to the IBar result in well-defined
changes to the camera parameters. This provides more pre-
cise control and repeatability at the cost of generality.

3 The IBar Widget

Zoom
Rotate LR

Rotate UD
Rotate LR

Aspect
ratio (shift)

Skew (shift)

Pan Zoom

Spin

COP LR COP UD COP LR
Zoom+dolly

COP LR

Rotate LR Rotate UD

COP UD

Dolly
(shift)

Figure 4: A schematic of the IBar widget. Arrows mark han-
dle locations and available movement directions. Moving the
first third of any IBar limb moves all four limbs simultane-
ously. Moving the second third of the top (or bottom) limb
moves both top (or bottom) limbs simultaneously. Moving
the last third of the left (or right) limb moves both the left
(or right) limbs simultaneously. Moving the mouse left-right
scales the length of the limb, moving up-down changes the
angle.

A schematic diagram of the IBar widget is shown in Fig-
ure 4. Conceptually, the IBar represents the two-point per-

2

Online Submission ID: WUCSE-2004-32

spective rendering of a cube centered on the Look vector of
the camera. The IBar is inspired by the use or vanishing
points to control perspective; changing the IBar indicates
the desired change to the perspective rendering of the cube.
The internal parameters of the camera (center of projection,
focal length) are reflected in the shape of the IBar. Except
for when the IBar is being moved, it always appears in the
middle of the screen at a constant size (one-half of the screen
height).

Moving or rotating the entire IBar corresponds to mov-
ing or rotating the camera; the exact behavior depends on
whether or not the user wishes to use the IBar in camera or
object-centric mode. In object-centric mode the IBar repre-
sents a cube, and changing the shape of the IBar indicates
how the cube should be re-drawn. For example, moving the
IBar up and to the right moves the center of the scene up
and to the right.

In camera-centric mode, the user moves the IBar in the
scene to the desired position relative to the scene, as shown
in the current rendering. The IBar then snaps back to its
default position and orientation, dragging the scene with it.

Changing the angles and lengths of the limbs corresponds
to moving or changing the vanishing points. This causes
the camera to move (rotation around the cube or dolly-in),
change focal length, move the center of projection, or some
combination thereof. To simplify symmetric changes, differ-
ent parts of the limbs change either two or four of the limbs
simultaneously. The size of the limbs is changed by left-
right mouse movement, the angles by up-down movement.
The IBar always snaps back to the center of the screen after
the end of a manipulation.

3.1 Visual cues

The angles of the limbs provide information about the van-
ishing points of the rendering. The relative differences in the
limb angles indicate in which direction the center of projec-
tion has been shifted; if all of the limb angles are the same
size, then the center of projection is in the middle of the
screen. The absolute angles of the limbs indicate where the
vanishing points are — this is a combination of the distance
of the cube from the camera and the focal length. The hori-
zon line can also be explicitly indicated by the placement of
the horizontal bar (Section 3.6).

The IBar represents a unit cube at a distance d from the
camera. If the user has specified a focus distance 1 then the
cube will be placed at that distance. Alternatively, the user
can select a point in the scene to define the focus distance.

To keep the projected size of the cube constant on the
screen we scale the width and height (but not the depth)
by:

s = dH/f (1)

where f is the focal length. The limbs of the IBar are the
projection of the adjacent cube edges.

3.2 Screen-space position and orientation

We begin by describing the manipulations that change the
position and orientation of the cube in the image plane. The
mouse movements and widget handles are identical for both

1The focus distance is used to specify a depth of focus; it does
not affect the perspective matrix.

the camera- and object-centric manipulations, but the be-
havior is different.

Camera-centric:

Object-centric:

Figure 5. Pan: Move the IBar using the handle at the
center.

Camera-centric:

Object-centric:

Figure 6: Camera spin: To rotate the camera about its
Look vector, rotate the IBar using the top (or bottom) of
the stem.

3.3 Rotation

These two operations support the traditional virtual track-
ball [Hultquist 1990] camera manipulation. The rotation
point is the center of the cube; this point can be tied to an
object if desired (see above). Because the IBar snaps back
after every manipulation, the object can be rotated through
all 360 degrees.

Figure 7: Camera rotate left-right: To rotate the camera
left or right, scale the appropriate side limbs. Lengthening
the right limbs is equivalent to shortening the left limbs.

3

Online Submission ID: WUCSE-2004-32

Figure 8: Camera rotate up-down: To rotate the camera
into or out of the film plane, scale the appropriate top or
bottom limbs. Lengthening the top limbs is equivalent to
shortening the bottom limbs.

3.4 Zoom and dolly-in

These operations change the size of the rendered objects,
and, optionally, the perspective distortion.
Camera-centric:

Object-centric:

Figure 9: Zoom in/out: To zoom the camera in and out
without changing the perspective distortion, scale the mid-
dle of the IBar.

Figure 10: Dolly in/out: To dolly the camera in/out with-
out affecting the focal length, change the angles on all four
limbs simultaneously while holding the shift key.

Figure 11: Dolly in/out with zoom: To dolly the camera
in/out and simultaneously change the focal length, change
the angles on all four limbs simultaneously.

3.5 Internal Camera Parameters

There are 5 internal camera parameters; center of projection
(2), focal length, skew, and aspect ratio. Focal length was
discussed earlier in conjunction with dolly in. Aspect ratio
changes the ratio of the height to the width. Skew essentially
performs a shear in the image plane.

Vertical:

Horizontal:

Figure 12: COP: To change the center of projection, make
the angles of the top limbs different from the bottom ones
(moves the center of projection up/down). Similarly, mak-
ing the angles of the left limbs different from the right moves
the center of projection left-right.

Figure 13: Aspect ratio: To change the aspect ratio, grab
a point on the IBar stem and move up-down while holding
the shift key.

Figure 14: Skew: To change the skew, grab a point on the
IBar stem and move left-right while holding the shift key.

3.6 Options

The IBar can be extended in a couple of ways. First, the
horizontal bar can be placed to indicate the horizon line.
Second, the IBar can be placed at a given point in the scene,
allowing the user to both visualize the perspective distortion
at that point, and to rotate the camera around an arbitrary
point in the scene.

Figure 15. Object rotate: Rotating the IBar around an
arbitrary point in the scene.

Third, there are several possible methods for switching
between camera- and object-based approaches. Option one
is to use a toggle switch. Option two is to use a key-modifier
such as the control key. Option three is to take advantage
of the multiple handles for each camera operation. For ex-
ample, there are two zoom handles (left and right). We can
map the left handle to the camera-centric zoom and the right
handle to the object-centric version. Similarly, we can map
all of the top limbs to camera-centric and all of the bottom
limbs to object-centric. This has the advantage of elimi-
nating modes, but it does increase the number of distinct

4

Online Submission ID: WUCSE-2004-32

Maya first IBar first
Interface Learning View Learning View

Maya avg. 11 8.2 7 6.53
Maya SD. 2.2 2.5 2.7 3.8
IBar avg. 12 6.3 7.6 8.6
IBar SD. 5.7 2.9 3.7 5.7

Table 1: Results of the user study, 10 participants. All times
are in minutes.

handles.
Finally, the shift-key can be used to constrain the inter-

action in one of two ways. We currently use the shift-key
to select the less-common camera interaction (see Figure 4).
The movement of the limb is constrained to be either ver-
tical or horizontal, depending on the direction the user first
moves. Both directions are enabled by holding down the
shift key.

A second option is to use the shift key to constrain the mo-
tion, and allow simultaneous horizontal and vertical changes
to the limbs as the default.

4 User study

We performed a small user study to compare the use of the
IBar with a traditional camera interface (Maya). The user
group consisted of 10 students, 7 of which had little or no
experience with a 3D camera. Each user was randomly as-
signed to start with either the Maya or the IBar interface.
They were given a list of written instructions on how to
manipulate the camera and allowed to play with the inter-
face until they were satisfied that they understood how it
worked. The scene they practiced with is the same scene we
used for the study, a 3x3 array of colored tables (see Fig-
ure 16). We then presented the users with a sequence of
3-5 screen shots 2. For each screen shot the user manipu-
lated the camera from its default position until they were
satisfied that they had matched the screen shot. They then
repeated the entire process (learning and matching) for the
other manipulation technique.

The data set: We created 20 screen shots, that were one
or two manipulations away from the default view. Each user
completed two or three different scenes for each interface (for
a total of 4 or 6), depending on time. The scenes were all
different because we felt that, once a user had reconstructed
a view, doing so again would be easier, even if the manipu-
lation techniques were different.

The collected data: We kept track of the amount of time
spent learning the interface and how long it took the user
to match the screen shot. Each user was asked how often
they used a 3D interface, and to rate their knowledge of the
mathematics of 3D projection. We also asked users to rank
each interaction mode on a scale from one to five; the IBar
average score was 3.3, Maya was 2.9.

The results are summarized in Table 1. Our observations
are as follows. First, our three participants who ranked
themselves as knowledgeable performed, on average, as well
as the novice users. (Note that none of the 10 participants
had ever used Maya before; our expert users were graph-
ics students who had implemented a camera with a simple
key-based interface.) Second, the people who used the IBar

2We had originally planned for 10-20 screen shots, but due to
the time it took for the subjects to match the scene (approx. 5-15
minutes) we reduced the number.

Figure 16: Our test scene, default view.

first and Maya second spent less time learning both inter-
faces than the people who started with Maya. This appears
to be because the IBar taught them more about the camera
transformations. The times for matching screen shots were
similar between the two interfaces, with the times being less
for whichever interface was used second.

Only three users (two of which had started with the IBar)
managed to match one or two more difficult scenes that re-
quired more than two camera manipulations. Times ranged
from 2 to 20 minutes, and were equivalent for both tech-
niques. The people who were successful were the ones who
thought about the transformations, rather than blindly ma-
nipulating the widgets. These were also the people who
found the IBar more intuitive.

5 Implementation

In this section we define the equations that correspond to the
camera manipulations in the previous section. Our camera
parameters are summarized in the following table; the per-
spective matrix is built from these parameters in the usual
way [Michener and Carlbom 1980], for completeness’s sake
we summarize the matrices in Appendix A. If the user has
selected an object to define the focus distance (Section 3.1)
then d is the distance from the camera’s position T to the
object.

V V

L L

R

T
T

f

f

HH

W

v0u0

θ

d

Name Variable
Screen size W ,H
Position T

Right ~U = ~V × ~L

Up ~V

Look ~L

Rotation R =
[
~UT ~V T ~LT

]
Focus distance d
Focal length f
Aperture angle θ = 2 tan−1(H/f)
Center of projection (u0, v0)
Film plane scale (Eq. 1) s = d(H/f)

Table 2: The camera and its parameters.

5

Online Submission ID: WUCSE-2004-32

5.1 Drawing the IBar

The IBar represents a unit cube with the front edge centered
on the Look vector and oriented parallel to the Up vector.
The four adjacent edges extend back in the Look and Right
directions. The x and y directions are scaled to account for
the focal length, but the z component is not. The IBar is
shifted in the film plane to counter-act any non-zero center-
of-projection.

The middle of the IBar is at:

Im = T + d~L + (su0)~U + (sv0)~V(2)

The top and bottom points of the IBar
are at:

It = Im +
s

2
~V (3)

Ib = Im − s

2
~V (4)

The endpoints of the horizontal bar are
at:

Ih = Im ± s

4
~U (5)

The four endpoints of the IBar are at:

It/bl/r = It ± s~U ± s~L (6)

5.2 Manipulating the IBar

The camera parameters are changed when the user manipu-
lates the IBar. The IBar is then drawn with the new camera
parameters; hence the manipulations are indirectly reflected
in the changed projection. In object-space mode the scene
is drawn with the new camera. In camera-space mode the
scene is drawn with the original camera; when the manip-
ulation is finished, the final camera is created by inverting
the appropriate action (for instance, panning in the opposite
direction).

The following is a summary of the variables (mouse and
projected IBar) used to update the camera.

Name Variable
Projected limb base lb
Projected limb ~l
~l normalized l̂ = ~l/||~l||
Mouse down position p
Current mouse position q
Mouse move ~v = q − p

Table 3: Manipulation parameters. All values are in camera
coordinates, [−1, 1] × [−1, 1]. The limb is whichever limb
(four arms or horizontal bar) or stem that was selected.
The base is the base of the selected limb (one of It, Ib, or
Im).

Pan (changing Im): The camera is moved by the mouse
vector projected into the film plane:

T ′ = T + svx
~U + svy

~V (7)

Uniform zoom (changing Ih or all limb lengths): The
focal length f is scaled by the length change of the limb:

f ′ = f
< l̂, p− lb >

< l̂, q − lb >
(8)

Spin (Rotating the stem): The Up and Right vectors are
rotated around the Look vector by (Rz is a rotation around
the z axis):

r = tan−1(qy/qx)− π top selected (9)

r = tan−1(qy/qx) + π bottom selected (10)

~U, V
′

= Rz
~U, V (11)

Rotate (lengthening the left-right or top-bottom
limbs): The camera is rotated about the focus point (fp =

T + d~L). The rotation is either around the Up vector (left-
right limbs) or the Right vector (top-bottom limbs).

α = vxπ/2 (12)

~U, V, L
′

= RT R(α)R ~U, V, L (13)

T ′ = (T + d~L)− d~L′ (14)

where R(α) is either a rotation around the X (top-bottom)
or the Y (left-right) axis. If the selected limb is the bottom
one, and the rotation is top-bottom, then α = −vxπ/2.
Dolly with zoom (changing the angle of all four
limbs): The focal distance is adjusted by the change in an-
gle, then the focal length is modified so that the object does
not change size. The desired focal distance change is found
by moving the limb in 3D, projecting it, and comparing the
resulting angle. The limb is moved by:

∆y = ±svy (15)

where the sign is taken so that the limbs move in the ap-
propriate direction. The new focal distance and focal length
are then:

y = (lb)y − ~l′y (16)

d′ = −1/2 + (W/H)/(4y) (17)

f ′ = fd′/d (18)

where l′ is the limb adjusted by Equation 15.
Center-of-projection: The center of projection is changed
to reflect the change in the ratio of the angles of the limbs
(either left-right or top-bottom). The camera is then panned
in the opposite direction to keep the IBar in the middle of
the screen.

u′0 = u0 + vy (19)

T ′ = T − svy
~U (20)

or (21)

v′0 = v0 + vy (22)

T ′ = T − s(W/H)vy
~V (23)

(24)

6

Online Submission ID: WUCSE-2004-32

5.3 Camera-based

In camera-based mode the final camera is not the one cal-
culated above, but a camera that moves the scene in the
opposite direction. This is easily implemented by changing
p, q, and v, and using the same equations. For the pan and
zoom operations, swap the role of p and q, i.e., v = −v. For
the spin operation, negate the sign of the x component of v
(which creates a rotation in the opposite direction).

5.4 Horizon line

To place the horizon line, first project the limbs and the
stem of the IBar into 2D. Intersect the left limbs and the
right limbs, to produce two points. Intersect the line formed
by connecting these two points with the line of the stem; the
percentage t along the stem is used to move the horizontal
bars:

Ih = (1− t)It + tIb ±
s

4
~U (25)

5.5 Placing the IBar

To place the IBar at an arbitrary point pd in the scene,
replace Equation 2 with:

Im = pd + (su0)~U + (sv0)~V (26)

The focus distance is d = pd − T . The camera manipu-
lations of the previous section remain the same, except for
the rotations, which now rotate around pd. Equation 14 is
the same, except for the calculation of T ′:

T ′ = pd + RT R(α)R(T − pd) (27)

6 Conclusion

We have presented a simple, easy-to-use screen-space widget
for controlling all aspects of a perspective projection, in par-
ticular the internal camera parameters. The widget allows
the user to manipulate the camera using just the mouse, and
provides visual clues about how the perspective will change
with manipulation.

The IBar appears to provide a better conceptual insight,
especially for novice users, into how the camera works than
a traditional user interface. The combined zoom and dolly
was particularly popular, as was the lack of menus and need
for interaction mode changes.

A Projection matrix

k = near/far (28)

P =

 1 0 u0 0
0 1 v0 0
0 0 −1

1+k
k

1+k

0 0 −1 0

 (29)

S =


H

ffar
0 0 0

0 W
ffar

0 0

0 0 1
far

0
0 0 0 1

 (30)

R =

 − ~U − 0

− ~V − 0

− ~L − 0
0 0 0 1

 (31)

 u
v
z
w

 = PSR

 1 0 0 |
0 1 0 T
0 0 1 |
0 0 0 1


 X

Y
Z
1

 (32)

u′ = u/w (33)

v′ = v/w (34)

References

Blinn, J. 1988. Where am i? what am i looking at? In IEEE
Computer Graphics and Applications, vol. 22, 179–188.

Bowman, D. A., Koller, D., and Hodges, L. F. 1997. Travel
in immersive virtual environments: An evaluation of viewpoint
motion control techniques. IEEE Proceedings of VRAIS’97, 7,
45–52.

Carlbom, I., and Paciorek, J. 1978. Planar geometric projec-
tions and viewing transformations. In ACM Computing Sur-
veys (CSUR), vol. 10.

Cole, R. V. 1976. Perspective for Artists. Dover Publications.

Gleicher, M., and Witkin, A. 1992. Through-the-lens camera
control. In Siggraph, E. E. Catmull, Ed., vol. 26, 331–340.
ISBN 0-201-51585-7. Held in Chicago, Illinois.

Hultquist, J. 1990. A virtual trackball. In Graphics Gems.
462–463.

Michener, J. C., and Carlbom, I. B. 1980. Natural and efficient
viewing parameters. In Computer Graphics (Proceedings of
SIGGRAPH 80), vol. 14, 238–245.

o’Connor Jr., C., Kier, T., and Burghy, D. 1998. Perspective
Drawing and Application. Prentice Hall.

Poupyrev, I., Billinghurst, M., Weghorst, S., and
Ichikawa, T. 1996. The go-go interaction technique: Non-
linear mapping for direct manipulation in VR. In ACM Sym-
posium on User Interface Software and Technology, 79–80.

Stoakley, R., Conway, M. J., and Pausch, R. 1995. Virtual re-
ality on a WIM: Interactive worlds in miniature. In Proceedings
CHI’95.

Wloka, M. M., and Greenfield, E. 1995. The virtual tricorder:
A uniform interface for virtual reality. In ACM Symposium on
User Interface Software and Technology, 39–40.

7

	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: WUCSE-2004-32
	Notes:
	Title: The IBar: A Perspective-based Camera Widget
	Author: Authors: Grimm, Cindy; Singh, Karan; Sudarsanan, Nisha
	Date: June 18, 2004
	Email:
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: 314-935-6160
	Footer1: Department of Computer Science And Engineering - Washington University in St. Louis

