


WUCSE-2003-54: Using Texture Synthesis for Non-Photorealistic Shading from
Paint Samples

Christopher D. Kulla
cdk1@cec.wustl.edu

James D. Tucek
jdt1@cec.wustl.edu

Reynold J. Bailey
rjb1@cs.wustl.edu

Cindy M. Grimm
cmg@cs.wustl.edu

Department of Computer Science & Engineering
Washington University in St. Louis

One Brookings Drive, Campus Box 1045
St. Louis, MO, 63130-4899

Abstract

This paper presents several methods for shading meshes
from scanned paint samples that represent dark to light
transitions. Our techniques emphasize artistic control of
brush stroke texture and color. We first demonstrate how the
texture of the paint sample can be separated from its color
gradient. We demonstrate three methods, two real-time and
one off-line for producing rendered, shaded images from the
texture samples. All three techniques use texture synthesis
to generate additional paint samples. Finally, we develop
metrics for evaluating how well each method achieves our
goal in terms of texture similarity, shading correctness and
temporal coherence.

1. Introduction

Traditional artists convey shading using both brush
stroke texture and by varying the color of the paint. They
also work exclusively on a flat canvas, requiring a good
sense of abstract spatial visualization to convey believable
lighting. On the other hand, computer graphics programs
are very good at computing lighting, but are not able to
make artistic decisions about color choice and paint texture.
The algorithms and techniques we present in this paper at-
tempt to address this disparity by letting the artist and soft-
ware each do what they are best at. When artists compose
a scene, they have complete control over the final image.
They can alter the shading, brush stroke, and color as they
see fit. Our goal is to make this freedom accessible when
shading 3D models, while leveraging the computer’s pro-
cessing power to paint complex meshes.

Many existing non-photorealistic shading techniques are
applications of very stylized techniques such as hatching or
stippling. Particular tone values are created by adding in

strokes until the over-all effect is dark enough. Creating
a procedural texture for these types of techniques is fairly
straightforward. In this paper we explore the use of less
structured texturing styles, giving the artist more freedom
over brush texture and color changes.

In our system, an artist provides an example of a shad-
ing change from dark to light in an image strip. This paint
sample can either be scanned in from physical media or cre-
ated using a 2D paint program. We then apply this user-
defined shading style to a mesh, making it appear to be
painted with the same technique (see Figure 1). Consider
a typical sample as shown in Figure 8(a). It has two dis-
tinct properties that vary with shading: color and brush
texture. The color transitions are typically smooth (albeit
non-linear), which makes them easy to model. Extracting
texture change is more difficult, both because the texture
transitions are coarser than the lighting changes, and be-
cause creating “more” texture is not as simple as it was in
the hatching or stippling case.

To generate more texture we rely on texture synthesis,
which is not a perfect process since even the best known
algorithms have cases in which they fail. We present a tex-
ture synthesis algorithm, based on the image quilting ap-
proach [3], that is suited to the generation of texture for
shading.

There are a variety of ways one might apply shaded tex-
ture to an object, and even more ways to animate the re-
sult. We present three different techniques that range from
purely image-based to the more traditional texture-mapping
approaches. In order to quantify and compare these meth-
ods, we introduce a metric that qualitatively captures com-
mon texture distortions, shading errors and temporal coher-
ence in animation.

We discuss previous work in section 2. In section 3 we
show how to process paint samples to separate color transi-
tion from texture transition. In section 4 we describe three



Figure 1. A typical shading paint sample,
scanned by the user, applied to a mesh.

rendering methods that apply the paint sample to a lit mesh.
Section 5 introduces our metrics and section 6 compares the
quality of each rendering method using them. We discuss
future directions of our work in section 7.

2. Previous Work

The problem of non-photorealistic shading is well stud-
ied. Technical illustration shading [5] introduced the use of
warm-cool color blends to enhance the perception of shape
and orientation. Artists indeed typically use colors that,
while unrealistic, can enhance the perception of the image.
The lit sphere approach [16] extracts artistic shading models
from actual paintings. This allows a wide range of effects
from traditional painting to be reproduced. Unfortunately,
much of the original brush texture is lost as the shading gra-
dient is captured. Another popular shading style is cartoon
shading [9] which uses lighting values to apply a thresh-
olded color map, giving a cartoon-like appearance.

Artists also make use of texture change across a surface
to convey lighting. Several papers have addressed the tech-
nique of hatching [14, 21, 9] in which the lit appearance
is conveyed by varying stroke densities and orientations.
Other rendering styles that rely purely on texture change are
charcoal rendering [10], engravings [12] or half-toning [4].
All of these systems use texture only and do not address the
issue of color (which is reasonable for the particular medi-
ums they convey). All of these techniques are very stylized
and are therefore able to be captured procedurally or with
minimal user input.

Stroke based techniques such as the WYSIWYG NPR
system [7] take a different approach by attaching paint

strokes on the surface of the object. These strokes can
convey fixed features of the model, or move over the sur-
face in response to lighting changes. The idea of attaching
paint strokes to the model is also used in painterly render-
ing [11]. This approach is particularly interesting because
it completely automates the painting process using a parti-
cle system to place the strokes and various surface shaders
to determine their orientation, size, color and texture. The
system also addresses frame-to-frame coherence by reusing
strokes throughout the animation. Finally, Webb et al. [19]
show how to convey both texture and color change with
shading. They make use of the lapped texture method [13]
to place several levels of texture onto a mesh, then blend be-
tween levels using 3D textures. This gives the illusion that
the strokes are pinned to the mesh.

In this paper, we present an alternative approach to the
problem of non-photorealistic shading. When artists paint
an image in real life, they often must replicate identical
brush strokes over and over so as to completely cover the
surface they are trying to capture. We model this process
using texture synthesis. In particular, we were inspired by
the texture transfer algorithm [3] which is able to render an
image in the texture of a provided sample (for example a
banana textured like an orange).

Several papers [18, 20] address the problem of synthe-
sizing texture across a mesh, instead of across an image.
These approaches require that the mesh be topologically
“nice”. We present two alternatives for texturing that op-
erate on arbitrary meshes, and have different trade-offs for
texture accuracy versus object frame-to-frame coherency.

3. Paint Sample Processing

A scanned paint sample has two distinct properties: tex-
ture and color. The color gradient is the global color change
across the sample. We call this change the color trajectory,
as it defines a path through color space. The color trajec-
tory of a paint sample is typically non-linear and is stored
as a 1D texture map. Brush texture can be described as lo-
cal variations of the color gradient. We first show how a
smooth color gradient can be extracted from a paint sample.
Then, we show how the texture of the sample can be treated
independently of the color trajectory, allowing the user to
modify the perceived color transition while preserving the
textured features of the sample.

3.1. Color Gradient Extraction

We assume that our paint sample is stored in a wide hor-
izontal 2D image and that the shading changes from left to
right. An example of such a paint sample is provided in
Figure 8(a). As can be seen in Figure 9, plotting the color



values of the paint sample in RGB space reveals the rough
shape of its non-linear color trajectory.

To extract a smooth color trajectory from a given sample,
we simply average the colors of each pixel column of the
sample image. This effectively filters the 2D sample into a
1D image strip that represents a path through color space.
Unfortunately, the result contains a fair amount of streaking
due to local texture variations (Figure 8(b)). We run the
following recursive algorithm on the trajectory’s set of RGB
points in order to sort the colors into a smooth, continuous
gradient.

We first seed the algorithm with the two endpoints of
the unsorted trajectory. Given two colors A and B of the
trajectory in RGB space, we let M be their midpoint. We
search for the point C that is closest to M, but contained in
the sphere of diameter AB (see Figure 2). If such a point is
found, the algorithm runs recursively on A and C and on C
and B. If no such point is found, we know that A and B are
close enough to be considered neighbors and the recursion
stops by adding A and B into a linked list representing the
sorted color trajectory. The output trajectory may contain
fewer colors than the input because samples which deviate
too much from the path are removed. Simple linear inter-
polation can stretch the output gradient back to the size of
the input if necessary. Figure 8(c) shows how the output of
the algorithm has effectively removed the streaking effect
while maintaining the shape of the non-linear color blend
we wanted to extract.

Figure 2. Searching for the sample point
halfway between A and B

For trajectories of high curvature, this algorithm may re-
ject too many points and clip the most curved section from
the output. We compensate for this by expanding the search
area for C by a user defined scale factor. The output still
may have a different rate of color change because of dis-
carded color segments. We correct for this by allowing the
artist to use a simple click and drag interface to control the
speed of the color trajectory.

3.2. Separating Color and Texture

Texture change can be viewed as a local modulation of
the color gradient. We can represent it separately by sub-

tracting the color gradient from each pixel column of the
original paint sample. This produces an intermediate differ-
ence image with RGB values ranging from -1 to 1 (Figure
8(d)).

The advantage of this separation is that we can then add
an arbitrary color trajectory back into the difference im-
age (clipping any RGB values that fall outside the 0 to 1
range) to obtain a sample with different colors but simi-
lar texture. While this approach is purely heuristic, it does
in fact achieve the separation reasonably well. Figure 10
shows a red-to-yellow sample being modified into a much
more creative color blend by a user-specified path through
color space. The approach is not perfect. Indeed, we can
observe some hints of green in the recreated blend that may
be undesirable, but the main stroke features are preserved
which is our main objective. This approach allows an artist
to create a wide range of textured blends from a single ini-
tial paint sample. The separation is also useful for rendering
as described in the following section.

4. Rendering Methods

We present three different rendering methods to apply a
paint sample onto a shaded mesh.

4.1. Image Based Texture Synthesis

This approach was inspired by the image quilting and
texture transfer algorithm [3]. The image quilting algo-
rithm synthesizes texture by cutting random blocks out of
the sample and pasting them down in the target image in
raster scan order. To ensure the continuity of the synthe-
sized image, the pasted blocks overlap each other and are
chosen in such a way as to minimize the color difference er-
ror of the overlapping areas. A second pass over the image
processes these overlap regions and performs a “minimum
error-cut” which produces an optimal irregular boundary
between the blocks that further minimizes discontinuities.
An additional contribution of image quilting is the notion
of texture transfer, which makes it possible to render an im-
age in the texture of a provided sample.

We start by rendering a grayscale shaded image that will
serve as a guide for the synthesis. Since we are letting the
artist make decisions about color and texture for the final
appearance of the model, the fact that illumination is only
computed in levels of gray is not a problem. For the results
presented in this paper, we used a directional light source~L
and computed lighting as(1+ ~N ·~L)/2 to get a full range of
shading values across the mesh for analysis purposes. Noth-
ing prevents the use of multiple lights or more sophisticated
lighting algorithms. We supplement the shaded image with
an object ID buffer [8] so that we know to which mesh each
pixel belongs.



The advantage of using the image quilting algorithm to
perform the texture synthesis is that we can control the ap-
pearance of the output by placing additional constraints on
the block picking stage. In particular, we add the constraint
that thex coordinate of the block must be no more thank
block sizes away fromx0 = L · Wsample, L being the av-
erage light value of the block in question,Wsample being
the width of the paint sample image andk being a texture
dependent parameter (k = 4 worked best for us in most
cases). This constrains the search area to a region of the
correct light level. This is somewhat different than what is
suggested by Efros and Freeman for texture transfer. They
add the constraint that the luminance of the block in the
guide image must match the luminance of the block from
the sample. Restricting the search range is more effective in
our case because we do not want to restrict the luminance
values of the paint sample to a linear ramp. For example,
a paint sample that transitions from blue to red will have
roughly constant luminance.

We made another important modification to the texture
transfer algorithm. As more constraints are added to the al-
gorithm, it is more likely that the underlying block structure
becomes visible due to the increased difficulty in finding a
suitable block. Efros and Freeman suggest running the syn-
thesis algorithm multiple times, decreasing the block size at
each step, and trying to match the previous level as much as
possible. This increases the computation time significantly
yet does not completely solve the problem because regions
where the shading changes sharply still appear blocky.

We are able to take advantage of our knowledge of the
data to solve this problem differently. In particular: light-
ing changes are more important to capture with high fre-
quency than texture changes. Getting the color gradient
right is therefore more important than getting the texture
to change along with the lighting. We generate the high
frequency lighting component of the image by looking up
the color gradient with the shade value at each pixel. We
can then synthesize the texture separately by only using the
texture difference image: the paint sample minus the color
gradient as described in section 3.2. We recombine the two
images by adding the RGB values together pixel by pixel,
clipping any overflows that occur. This effectively removes
the blocking artifacts without increasing the processing time
because we can use only one pass of a relatively coarse
block size for texture synthesis. Another benefit of this sep-
aration is that we can let the artist tweak the color gradient
in real-time after the texture has been synthesized, increas-
ing artistic control.

Naturally, the synthesis is only performed on the regions
of the image that have the correct ID value in the ID buffer.
Border cases where only a few pixels lying underneath a
synthesis block are of the correct ID are handled by care-
fully counting those pixels and only adding in error terms

for those pixels. Blocks that cover regions without any such
valid pixels can be skipped, which speeds up image genera-
tion greatly.

Finally, we address the issue of creating animations
with this method. Naively resynthesizing each frame from
scratch produces a shower door effect [6]. To improve tem-
poral coherence we add an additional constraint: we require
each block to match the previous frame as much as pos-
sible (computed as a squared pixel difference error of the
synthesized texture image). For small lighting or camera
movements, this added constraint works very well at keep-
ing texture coherent over time. The shower door effect is
not completely eliminated, but is reduced to an unobtrusive
level. Naturally, for paint samples that exhibit drastic tex-
ture variations this constraint will make it impossible for the
synthesis to find suitable blocks after a few frames. There is
no way for the synthesis to turn a hatch mark into a curve,
for example. For these more difficult cases, we must rely on
blending to improve coherence. We synthesize an entirely
new set of texture everynth frame and blend texture values
between these keyframes while recomputing the shading at
every frame. Again, the separation of color transition from
texture is very beneficial. See the accompanying videos for
examples of each method.

Stroke density in this method is directly related to the
stroke density in the original sample. Therefore the ratio be-
tween image resolution and paint sample resolution is sig-
nificant. Simply rescaling the input paint sample is suffi-
cient to achieve a different stroke density. Since the image
generation happens off-line, the target resolution is known
ahead of time and the paint sample can be prepared accord-
ingly.

The off-line nature of this algorithm is its main disad-
vantage. Rendering takes between 20 seconds to a minute
depending on image resolution. The two following sections
describe alternatives that run in real-time on commodity
graphics hardware.

4.2. View Aligned 3D Texture Projection

This approach uses texture synthesis only as a prepro-
cessing step. We divide the input paint sample into 8 sec-
tions of roughly constant shade level. We generate larger
versions of each section with image quilting. We found that
generating 8 levels was adequate for the particular size of
our paint samples given that this is about how often the tex-
ture changes. We experimented with generating more levels
and with trying to keep stokes coherent from level to level,
but observed no substantial gain.

Our implementation runs on a GeForce 4 class graph-
ics card with each level set to 512×512 pixels. In order to
keep texture information separate from the color gradient,
we subtract the average color of each section and only syn-



(a)T: input texture (b) T′: shifted input
texture

(c) M: circular mask (d) M′: shifted mask (e)O: result tiled twice in each direction without any
seams

Figure 3. Generating a tileable texture level.

thesize a texture difference image. We store this difference
image in a regular bitmap by mapping the interval[−1, 1]
linearly to[0, 1]. Additionally, we guarantee that the texture
be tileable. This constraint is not easily solved by adding
constraints to the texture synthesis because of the raster scan
order in which blocks are placed. Instead, we use a simple
masking technique as a post process to achieve the desired
result [2]. Given a square input imageT of sizen×n pixels,
we first generate a shifted imageT′ as follows:

T′[x][y] = T[(x + n/2) mod n][(y + n/2) mod n]

This shifts the edges of the image to the center, revealing the
vertical and horizontal seams it produces when tiled. The
pixels that were in the center ofT are also now on the edges
of T′ so it can be tiled. Next, we use the following mask to
blend the center ofT with the edges ofT′. A circular mask
works well in our case:

M[x][y] = 255− 255 ·
√

(x− n/2)2 + (y − n/2)2

n/2

We clip the values ofM to the interval[1, 255], and generate
M′ as we didT′. The output imageO is finally computed
as:

O =
T ·M + T′ ·M′

M + M′

This method works very well in our case because the syn-
thesized texture already has a repetitive structure, so the dis-
tortion introduced by blending is minimal. Figure 3 summa-
rizes the process and demonstrates how the resulting texture
can be tiled without any visible seams.

For rendering, we start by creating a 3D texture from
each of the synthesized levels by stacking them in order of
increasing shade level [19]. A simple pixel shader is used
to access the 3D texture, expand the value back to the in-
terval [−1, 1] and add a color gradient indexed by the light
value. We index the 3D texture using the screen coordi-
nates of the pixel fors andt, and the lighting value forr,
the depth texture coordinate. The(s, t, r) triplet is gener-
ated automatically by a vertex shader. Stroke density can be
adjusted by a simple scale factor ons andt. This is where
the advantage of having a tileable texture comes in, as no
seams are visible when the texture repeats over the image.

In order to avoid the impression that the texture is fixed
to the screen and that the mesh is “sliding” through it, we
keep track of an offset ins andt that we adjust when moving
the model. We increment this offset by the average screen
space displacement of the vertices most directly facing the
camera. This gives the illusion that the texture follows the
movement of the object, at least for the polygons that oc-
cupy most of the screen space. It is impossible to perfectly
move the texture along with the mesh since it is attached to



the view plane, but this approximation helps coherence for
the most perceptually obvious cases.

4.3. View Dependent Interpolation

This technique is, in some sense, a combination of
lapped textures [13] and texture synthesis on the mesh
[18, 20]. Like lapped textures, we generate a small num-
ber of groups of mesh faces which are each covered with
a texture. The groups of faces overlap,i.e. a face may be
covered by more than one texture. Unlike lapped textures,
we do not require that the face groups be disks, but only that
the individual faces be within some epsilon distance of each
other. This allows us to create a single texture map for the
teeth of the skull, for example.

Like texture synthesis on a mesh, we can generate texture
for one part of the mesh then propagate it to adjacent por-
tions of the mesh and continue the texture synthesis there.
However we do not require a connected mesh.

Once the texture maps are defined we use texture synthe-
sis to create 3D textures, as was described in section 4.2.

To create the texture maps we chose a small number of
views (typically 12-15) which surround the object. If the
object has a preferred orientation we choose that direction
as “up”, if possible. We center the object in the view by
automatically adjusting the zoom and panning the camera
until the object is centered and as large as possible. We then
use projection to generate texture map coordinates. We cre-
ate an alpha mask using the dot product of the viewing di-
rection and the face normals. To avoid “stretched” triangles
we clip the dot product to a non zero epsilon.

The main issue to address with this method is self-
occlusion. We scan-line render the mesh to determine
which faces are visible, and to determine their depth-
ordering. For every pixel that a face covers, we check if
there is another face that covers that pixel and is closer in
depth. If that face is covered, we remove it from the list of
faces for that view. If the two faces are adjacent in the mesh
then we do not mark the face as covered.

The above approach can leave a face uncovered if there
is no view for which that face is un-occluded. If this is the
case, we mark all of the faces that are covered by the current
view and generate another set of views, this time with only
the faces that were not covered in the first pass. (We only
need to keep the subset of these new views that actually
contain visible faces in the uncovered subset.)

Because the views overlap, there is a subset of the faces
that is visible in both views. The projection of the face cre-
ates a triangle in the image plane of each view; we can use
this triangle correspondence to map pixels from one view to
the other. During texture synthesis, as we finish the texture
image for one view we copy the results into adjacent views
to provide a smooth transition.

5. Metrics

In this section we outline our choice of metrics and pro-
vide empirical analysis of the performance on a test data
set. The goal of these metrics is two-fold. First, a metric
provides a quantitative way of comparing the results of dif-
ferent approaches. Second, defining an error metric can lead
to insights about what it means to use a texture to shade.

Our error metric has three components:

• How much does the texture in the rendered image
“look like” the texture in the sample?

• How accurately does the texture track the shade val-
ues? (Is the texture the correct one for that shade
value?)

• How stable is the texture from frame-to-frame? There
are two distinct choices here; either the texture is
“pinned” to the object and moves with the object, or
the texture is fixed to the image.

We define each of these below.

5.1. Texture similarity

There are many communities that are examining the
question of how to measure visual similarity, such as hu-
man perception researchers, image database querying, im-
age recognition, and texture synthesis. Developing a metric
for general human perception is beyond the scope of this
paper. we focus on a metric that is capable of measuring the
types of texture distortion we expect to be present. These
distortions can be categorized as stretch, rotation or shear-
ing effects, and discontinuities or poor texture sampling.
We first define the similarity measure and then demonstrate
its behavior on a small test set that is designed to capture
the above distortions types.

The image similarity measures we use are common
building blocks in image database retrieval algorithms [15].
The first measure is the difference in the color histograms.
Next, we filter the image to locate edges in the horizon-
tal, vertical, and diagonal directions. The second measure
is the difference between the edge image histograms. To-
gether, these two measures capture the distribution of color
and edge directions within the image.

We create one histogram for each color channel of each
image, for a total of fifteen histograms. Each histogram has
10 bins, with the divisions chosen so that the source texture
pixels are evenly distributed in the bins.

The four edge images are created by running a3×3 filter
across the image. The four filters we use are:−1 0 1
−1 0 1
−1 0 1

−1 −1 −1
0 0 0
1 1 1

 0 0 3
0 0 0
−3 0 0

−3 0 0
0 0 0
0 0 3





Figure 4. Rotation error for three different textures: random, diagonal and symmetric.

To compare two pixels we first find thes × s block sur-
rounding the pixel, then build the histograms using that
block. We then measure the Euclidean distance between
each pair of histograms, and normalize by dividing by
s× s× 15. We have experimented with block sizes ranging
from4×4 to12×12; the results are qualitatively similar, but
quantitatively different. As the number of pixels increases,
the distributions smooth out, so the total error decreases.

To compare a pixel to the source texture we find the best
pixel match. To speed up this process, we pre-process the
data and store it in ak − d tree. This allows us to find thek
nearest pixels inO(log3 n) time [1].

To check that this metric captures texture distortion we
evaluated it on three test cases. For all tests we sampled
the error at 100 randomly sampled pixels, with histogram
image block sizes of 4, 8, and 12.

The first test progressively rotates the texture and sam-
ples the error at 100 pixels for a12 × 12 image block.
For relatively symmetric textures we would expect to see
a small error for all angles. For textures with a strong di-
agonal element, the error achieves a maximum atπ/2, but
drops back as the angle approachesπ. Figure 4 shows how
our metric responds to rotation for three distinct textures.

The second test scales the texture in thex andy direc-
tions individually, and in both directions simultaneously.
The error should increase as the image is shrunk and ex-
panded. Figure 5 shows our metric measuring the distortion
introduced by scaling in thex andy directions.

For the third test we introduce an increasing number of
texture discontinuities. To create the discontinuity image
we run a slightly modified version of the image synthesis al-
gorithm of Section 4.1. A block pasted into location(x, y)
in the discontinuity image is taken randomly from a vertical
stripe centered aroundx in the original texture image. The
width of this stripe is2n, wheren × n is the pasted block

Figure 5. Scale error for the random texture.

size. The minimum edge cut between blocks is then ap-
plied. As the block size increases the distortion decreases,
since there are fewer boundaries. We generated 8 distor-
tion images, with block sizes from 4 to 32. Figure 6 shows
these three synthesis results along with their response to the
metric.

As shown in Figures 4, the metric behaves as expected
on the test set, and is also fairly robust to block size. The
test set also provides us with an expected absolute measure
of error for a given texture sample and block size.

5.2. Shading error

This metric calculates how close the texture at a pixel
is to the desired texture for that shade value. We first find
thek pixels in the source texture that are the closest to the
test pixel, using the metric outlined above. We then average
the shade values corresponding to thosek source pixels and
compare it to the real shade value. By usingk matched pix-
els (wherek is typically 3) instead of a single pixel we get



Figure 6. Sample distortions, block sizes 4, 20, and 32, for the random texture.

a better average shade measure, since texture can be fairly
similar across a range of shade values.

5.3. Frame-to-frame coherency

We measure frame-to-frame coherency in image or ob-
ject space. For image-space coherency, we compare the his-
togram difference between the same pixel location in frame
i and framei + 1. We measure this error for some number
of randomly chosen pixels, making sure the sample blocks
lie inside the rendered object for both frames. To measure
object-space coherency we pick a point on the 3D object
that is visible in both frames, and compare the pixels in the
two frames.

6. Results

Each of the rendering techniques presented in this pa-
per has its distinct set of advantages and drawbacks. The
image based texture synthesis method is the best for indi-
vidual frame quality, but takes a long time to render. Ad-
ditionally, frame-to-frame coherence is difficult to achieve,
especially for samples that contain a lot of texture varia-
tion. The view aligned 3D texture method is very attrac-
tive because it can almost match the quality of the image
based technique, but runs in real time. The hardware does,
however, introduce error when interpolating across levels in
the 3D texture. Frame-to-frame coherence is again only ap-
proximated by trying to shift the texture in the view plane to
match the motion of the mesh on screen. The view depen-
dent technique also runs in real time, but keeps the texture
attached to the object’s surface. This gives excellent frame
to frame coherence, but we lose texture quality because the
texture is distorted to fit the contours of the mesh.

We use the metrics outlined in section 5 to compare our
renderings. Our metric shows that the texture synthesis
provides the greatest amount of texture fidelity (data is for
green to yellow texture, other paint samples give similar re-
sults). All methods capture shading with the same amount

Similarity Shading Temporal
Texture Synth. 0.07539 0.00536 0.00297

3D Texture 0.08048 0.00521 0.00016
View dep. 0.10197 0.00582 0.00547

Figure 7. Evaluating the rendering methods
of section 4 with error metrics from section 5.

of error, which is the most important result since our goal
is to convey shading. Temporal coherence was measured in
image space. In this context, 3D texturing works best be-
cause the texture is only translated from one frame to the
next, whereas texture synthesis must do blending to provide
coherence. The view dependent method, while coherent in
object space, is not at all coherent when measured in image
space as the texture may be distorted by the curvature of the
mesh.

7. Conclusion and Future Work

We have demonstrated three rendering algorithms for
shading a mesh using a provided paint sample. Each tech-
nique has its particular advantages, in terms of texture fi-
delity and texture coherence. All methods accurately cap-
ture both color and texture change with lighting. Recent
work in mesh texture synthesis [17] could be coupled with
3D texture blending. Artists also typically use brush strokes
to convey more than just shading. We could imagine con-
straining our synthesis as to capture surface curvatures and
silhouettes in styles provided by the user.

References

[1] S. Arya and D. M. Mount. Approximate nearest neighbor
queries in fixed dimensions. InProceedings of the fourth an-
nual ACM-SIAM Symposium on Discrete algorithms, pages
271–280. ACM Press, 1993.

[2] P. Bourke. Tiling textures on the plane (part 2)
http://astronomy.swin.edu.au/ pbourke/texture/tiling2/.



[3] A. A. Efros and W. T. Freeman. Image quilting for tex-
ture synthesis and transfer. InProceedings of the 28th an-
nual conference on Computer graphics and interactive tech-
niques, pages 341–346. ACM Press, 2001.

[4] B. Freudenberg, M. Masuch, and T. Strothotte. Real-time
halftoning: a primitive for non-photorealistic shading. In
Proceedings of the 13th workshop on Rendering, pages 227–
232. Eurographics Association, 2002.

[5] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-
photorealistic lighting model for automatic technical illus-
tration. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 447–
452. ACM Press, 1998.

[6] A. Hertzmann and K. Perlin. Painterly rendering for video
and interaction. InProceedings of the first international
symposium on Non-photorealistic animation and rendering,
pages 7–12. ACM Press, 2000.

[7] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowal-
ski, J. C. Lee, P. L. Davidson, M. Webb, J. F. Hughes, and
A. Finkelstein. Wysiwyg npr: drawing strokes directly on
3d models. InProceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 755–
762. ACM Press, 2002.

[8] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev,
R. Barzel, L. S. Holden, and J. F. Hughes. Art-based render-
ing of fur, grass, and trees. InProceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 433–438. ACM Press/Addison-Wesley Pub-
lishing Co., 1999.

[9] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized
rendering techniques for scalable real-time 3d animation. In
Proceedings of the first international symposium on Non-
photorealistic animation and rendering, pages 13–20. ACM
Press, 2000.

[10] A. Majumder and M. Gopi. Hardware accelerated real time
charcoal rendering. InProceedings of the second interna-
tional symposium on Non-photorealistic animation and ren-
dering, pages 59–66. ACM Press, 2002.

[11] B. J. Meier. Painterly rendering for animation. InPro-
ceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, pages 477–484. ACM Press,
1996.

[12] V. Ostromoukhov. Digital facial engraving. InProceedings
of the 26th annual conference on Computer graphics and in-
teractive techniques, pages 417–424. ACM Press/Addison-
Wesley Publishing Co., 1999.

[13] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures.
In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 465–470. ACM
Press/Addison-Wesley Publishing Co., 2000.

[14] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-
time hatching. InProceedings of the 28th annual conference
on Computer graphics and interactive techniques, page 581.
ACM Press, 2001.

[15] Y. Rui, T. Huang, and S. Chang. Image retrieval: current
techniques, promising directions and open issues, 1999.

[16] P.-P. Sloan, W. Martin, A. Gooch, and B. Gooch. The lit
sphere: A model for capturing npr shading from art. InGI
2001, pages 143–150, June 2001.

[17] C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern
mapping. InProceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 673–
680. ACM Press, 2002.

[18] G. Turk. Texture synthesis on surfaces. InProceedings of
the 28th annual conference on Computer graphics and in-
teractive techniques, pages 347–354. ACM Press, 2001.

[19] M. Webb, E. Praun, A. Finkelstein, and H. Hoppe. Fine
tone control in hardware hatching. InProceedings of the
second international symposium on Non-photorealistic ani-
mation and rendering, pages 53–ff. ACM Press, 2002.

[20] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary
manifold surfaces. InProceedings of the 28th annual con-
ference on Computer graphics and interactive techniques,
pages 355–360. ACM Press, 2001.

[21] G. Winkenbach and D. H. Salesin. Computer-generated pen-
and-ink illustration. InProceedings of the 21st annual con-
ference on Computer graphics and interactive techniques,
pages 91–100. ACM Press, 1994.

(a) Red to yellow paint sample

(b) Color gradient before sorting

(c) Color gradient after sorting

(d) Extracted texture

Figure 8. Extracting color gradient and tex-
ture from a typical paint sample.



(a) Paint samples

(b) Image Based Synthesis (c) View aligned 3D Texture Pro-
jection

(d) View dependent interpolation

Figure 11. Rendering a skull mesh with various paint samples.



(a) Color distribu-
tion

(b) Color trajectory

Figure 9. Path through RGB space for the
sample of Figure 8(a).

(a) A scanned paint sample

(b) User specified color gradient

(c) Applying the new gradient to the paint sample

Figure 10. Changing the color transition of
Figure 8(a) without changing its texture.


	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: WUCSE-2003-54
	Notes: 
	Title: Using Texture Synthesis for Non-Photorealistic Shading from Paint Samples
	Author: Authors: Kulla, Christopher; Tucek, James; Bailey, Reynold; Grimm, Cindy
	Date: May 20, 2003
	Email: 
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: 314-935-6160
	Footer1: Department of Computer Science And Engineering - Washington University in St. Louis


