

SEVER INSTITUTE OF TECHNOLOGY

MASTER OF SCIENCE DEGREE

THESIS ACCEPTANCE

(To be the first page of each copy of the thesis)

DATE: January 17, 2003

STUDENT’S NAME: Mark A. Schroering

This student’s thesis, entitled A Thesis on a 3D Input Device for Sketching
Characters has been examined by the undersigned committee of five faculty members
and has received full approval for acceptance in partial fulfillment of the requirements
for the degree Master of Science.

APPROVAL: Chairman

Short Title: 3D Input Sketching Device Schroering, M.Sc. 2003

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

A THESIS ON A 3D INPUT

DEVICE FOR SKETCHING CHARACTERS

by

Mark A. Schroering

Prepared under the direction of Professor C. Grimm

A thesis presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Master of Science

May, 2003

Saint Louis, Missouri

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ABSTRACT

A THESIS ON A 3D INPUT

DEVICE FOR SKETCHING CHARACTERS

by Mark A. Schroering

ADVISOR: Professor C. Grimm

May, 2003

Saint Louis, Missouri

The goal of this project is to develop a 3D input device using a stiff piece of

paper and a camera. The camera tracks the piece of paper in 3D space. The user

orients the paper in 3D space and then draws on the paper using a pen-like device.

The camera tracks the movement of the pen on the piece of paper. The location of

the pen in 3D space can then be calculated from the orientation of the paper.

A drawing application that uses this 3D input device was also developed. The

application allows a user to make characters by sketching ellipses. The drawing

application creates a virtual rendering of the paper and displays this to the user. As

the user positions the real paper, the virtual one mirrors its movements. The user

can draw shapes on the paper. These shapes then get rendered in the virtual scene.

Contents

List of Tables . iv

List of Figures . v

1 Introduction . 1

2 Previous Work . 3

2.1 Tracking a Plane . 3

2.2 Spatially-aware Devices . 4

3 Drawing Surface Tracking . 5

3.1 Calibration Pattern . 6

3.1.1 Making the Calibration Pattern 7

3.2 Camera Model . 7

3.3 2D Feature Detection . 10

3.3.1 Image Scanning . 11

3.3.2 Ellipse Fitting . 12

3.4 Camera Parameter Search . 14

3.5 Calculating the Drawing Surface’s Rotation and Translation 16

3.6 Some Lessons Learned . 19

4 Laser Pointer Tracking . 21

4.1 Finding the Laser Pointer in 2D Space 21

4.2 Calculating the 3D drawing location 22

5 Sample Drawing Application . 24

5.1 Virtual Display Windows . 24

5.2 Character Creation . 26

ii

5.3 Pie Menus . 26

6 Results . 28

6.1 Accuracy . 28

6.2 Real World Tracking . 32

6.3 Performance . 33

7 Future Work . 34

7.1 Performance Improvements . 34

7.2 Projector Use . 34

7.3 Tablet PC . 35

References . 36

Vita . 38

iii

List of Tables

3.1 Camera parameters . 9

3.2 Image Scanning Algorithm . 13

3.3 Ellipse Fitting Algorithm [4] . 14

3.4 Simplex Search Algorithm [13] . 17

5.1 3D Input Device Events to Mouse Events 26

6.1 Real World Tracking Results . 33

iv

List of Figures

1.1 An illustration of a tracked sketching device made from a piece of

cardboard, a calibration pattern, a digital video camera, and a laser

pointer. 2

3.1 Calibration pattern with chromaglyphs. The points D1−4 are the cor-

ners of the drawing space. The points, Pe, are the known points on

the ellipse borders. The circles in the pattern can be represented by

equations of the form above. 6

3.2 Camera Model . 8

3.3 Extrinsic Properties of the Camera. 9

3.4 Intrinsic Properties of the Camera. 10

3.5 Relationships between reference frames. 11

3.6 The red pixels that border the blue pixels are detected. 12

3.7 The relationship between a change in the real drawing surface’s orien-

tation and the virtual world. 18

3.8 The relationship between a change in the real drawing surface’s position

and the virtual world. 19

4.1 Convex polygon test. 22

4.2 Tracking the laser pointer in 3D space. 23

5.1 The virtual drawing surface window. 25

5.2 The virtual scene window. 25

5.3 Pie menus. 27

6.1 Results from Accuracy Test with the Scanned Points 29

6.2 Results from Accuracy Test with the Known Points 30

6.3 Results from Accuracy Test with the Scanned Points 30

v

6.4 Results from Accuracy Test with the Known Points 31

6.5 Results from Accuracy Test . 31

6.6 Real World Tracking Test Images. 33

vi

1

Chapter 1

Introduction

This thesis paper describes a general purpose 3D input drawing device. The 3D

drawing device consists of a digital video camera that continuously tracks the position

and orientation of a planar drawing surface. A rectangular piece of cardboard is used

as the drawing surface. There are calibration markings on the cardboard that allow

it to be tracked by the camera. Part of the drawing surface is transparent to allow

a laser pointer to shine through. The camera also tracks the position of the laser

pointer. The user can then draw on the paper using the laser pointer. The position

and orientation of the paper determine where in 3D space the pen is drawing. This

thesis also proposes a 3D shape sketching application that uses the device. The

drawing application uses the input device to allow a user to sketch shapes in a virtual

3D scene. The user can see the virtual shapes that are being created on the computer

monitor (see Figure 1.1).

The calibration pattern consists of a number of concentric ellipse pairs. The

input device processes images from the camera to detect the border points of the

ellipses. Equations for the ellipses are calculated using an ellipse fitting technique.

These equations are then used as part of a minimization search to find the orientation

of the digital camera relative to the paper. Once these parameters are found, the

orientation of the drawing surface relative to the digital camera can be determined.

The sample drawing application uses the parameters from the input device to

create a virtual scene of the drawing surface in 3D space. The user can move the paper

in front of the digital camera and see the virtual paper move in the same manner.

Drawing shapes is accomplished by using a laser pointer on the drawing surface. The

3D input device tracks the position of the pen. The drawing application uses this 3D

data to create shapes in the virtual scene.

2

Figure 1.1: An illustration of a tracked sketching device made from a piece of card-
board, a calibration pattern, a digital video camera, and a laser pointer.

The goal of the project is to create a 3D input device that lends itself to

drawing 3D characters. The device must be robust to different working conditions,

including poor-quality cameras and changes in lighting. The calibration pattern must

work when partially occluded or when part of the pattern is out of the camera’s field

of view. The device must also use inexpensive equipment that is available to most

people.

The next chapter of this paper talks about previous work in camera calibra-

tion and spatially-aware user interface designs. Chapter Three describes the technique

used to track the drawing surface. This chapter gives the details for the calibration

pattern, the virtual camera model, and the calibration process. Chapter Four dis-

cusses the technique used for tracking the laser pointer. Chapter Five describes the

3D shape sketching application. Chapter Six lists the results and analysis from ac-

curacy tests that were performed on the system. The last chapter discusses future

work.

3

Chapter 2

Previous Work

2.1 Tracking a Plane

The problem requires the tracking of a drawing surface in the scene. This problem,

and several variants, have been addressed in prior literature, most commonly in the

context of camera calibration. A typical calibration pattern allows the camera to

track the movement of the pattern’s features. The most common calibration pattern

used is a black and white checkerboard [17]. The corner points between the black

and white squares are found, and the camera parameters are then calculated. This

process is used in the Open Computer Vision (OpenCV) Library [11] to calibrate

cameras1.

The VISUAL PANEL [18] system tracks a flat cardboard pattern without using

any explicit calibration pattern. Because a pattern is not used, a more complicated

computational problem needs to be solved to determine the position and orientation

of the piece of cardboard.

For this problem, we are primarily interested in capturing the position and

orientation of a drawing surface with a known pattern. There are several techniques

that have been proposed for this problem. One is a differential method which tracks

continuous motions of a plane using spatio-temporal image derivatives [2]. Another

uses simultaneous estimates of both the position of the plane and the texture pattern

of that plane [3].

The technique that is most related to the solution described in this thesis

is the single image direct methods of computing planar pose. Much of this work is

1OpenCV is a software library that is used for real-time computer vision applications.

4

summarized in [10], which integrates previous work into a unified geometric framework

which uses combinations of point and line features.

2.2 Spatially-aware Devices

Non-traditional user interfaces, such as Graspable [5], Tangible [9], or Manipulable [7]

interfaces, have been shown to be better than the traditional mouse and keyboard for

many applications. In these alternative interfaces, the user picks up and manipulates a

real 3D object. This takes advantage of the phenomenal human ability to grab, move,

orient, and reason about 3D objects. Other examples of this type of interaction are

interface props used for neurosurgical visualization [8] and BRICKS [6], a software

and hardware framework for quickly prototyping graspable user interfaces.

Most position-aware devices have been implemented using specialized hard-

ware, such as the Polhemus FASTRAK six degree-of-freedom trackers [14]. The

device described in this thesis is not as general as the ones listed above, but it also

does not require specialized hardware. This makes it more suitable for the home,

school, or office environment.

5

Chapter 3

Drawing Surface Tracking

The core technical challenge of this project is the computer vision algorithm for

tracking the drawing surface. These problems are theoretically well understood in the

computer vision community. A calibration pattern is built with easily recognizable

features. These features are then found in a 2D video image stream. The perspective

transformation that takes 3D pattern features to 2D image pixels is then calculated.

Our requirement for this project was to come up with an algorithm that was

robust to lighting conditions, poor-quality cameras, and partial occlusions. The pat-

tern we use is built with color-contrasting ellipses. The 2D image features that need

to be detected are the ellipses. Our application requires a minimum of three ellipses

to be detected.

The input to this process is a video stream of the calibration pattern on the

back of the drawing surface. Each image is scanned to find the pixels that lie on the

ellipse borders. The equations of the ellipses are then calculated using these boundary

pixel points. The ellipse equations are used in a minimization search to find the

rotation and translation of the digital camera relative to the drawing surface. Once

the rotation and translation values of the digital camera are known, the translation

and rotation of the drawing surface can be determined.

Section 3.1 defines the calibration pattern. Section 3.2 describes the standard

virtual camera model. Section 3.3 goes over the 2D feature detection algorithms.

The search for the camera parameters is defined in section 3.4. Lastly, section 3.5

describes how the camera parameters are translated to paper movement.

6

Figure 3.1: Calibration pattern with chromaglyphs. The points D1−4 are the corners
of the drawing space. The points, Pe, are the known points on the ellipse borders.
The circles in the pattern can be represented by equations of the form above.

3.1 Calibration Pattern

We considered several properties when designing the pattern. First, the pattern

features must be easily distinguishable under different lighting conditions. Second,

the pattern must be asymmetric, or different poses will have the same appearance.

Third, the calibration pattern must work when partially occluded. The user holds

the paper, so it is likely that the user’s fingers will block some of the pattern. Also,

the pattern may only be partially visible. Lastly, there must be sufficient space left

on the drawing surface for sketching (see Figure 3.1).

To satisfy these constraints, the decision was made to use eight chromaglyphs [15]

arranged around a drawing surface. The points D1−4 represent the corners of the

drawing space. A chromaglyph is composed of N discs, each with a unique color,

chosen from a set of M prototype colors [15]. For this application N = 2, and M =

4. The permutations of the disc color uniquely identify the glyph. The calibration

pattern has eight chromaglyphs, positioned along the borders of the pattern. The

pattern itself could be any size; for this application, we chose a size that could be

7

easily handled by a user. The number of chromaglyphs was chosen so that only 1/4

of the pattern needs to be visible. The location of the chromaglyphs on the pattern

allows a transparent drawing region in the center of the pattern.

3.1.1 Making the Calibration Pattern

We made a virtual version of the calibration pattern using the Open Graphics Library

(OpenGL). The pattern can be saved to a bitmap file, which can be printed on a

standard printer at any desired size. The pattern is cut out and glued to a stiff piece

of cardboard.

3.2 Camera Model

The following is a list of definitions for terms that will be used throughout this paper.

• Frame of Reference: measurements are made with respect to a particular

coordinate system called the reference frame.

• World Frame: a fixed coordinate system for representing objects in the world.

• Camera Frame: coordinate system that uses the camera center as its origin.

• Image Frame: coordinate system that measures pixel locations in the image

plane.

The classic model for a camera is a pinhole at a fixed distance from an image

plane. The basic assumption behind this model is that the relation between coordi-

nates in the World Frame and coordinates in the Image Frame is a linear projection.

This means that straight lines project to straight lines. This model does not take into

account lens distortion. The resulting image is also inverted. This is not convenient

for image analysis because the image needs to be inverted for proper processing. We

use a model that is equivalent to the pinhole model, but the image is on the same

side of the pinhole as the object (see Figure 3.2) .

There is a set of parameters that describe the characteristics of a camera.

They are summarized in Table 3.1. The intrinsic parameters are those that specify

properties of the camera itself. These parameters do not change unless the camera

is re-focused and can therefore be calculated once using standard calibration tech-

niques [17]. The extrinsic parameters describe the position and orientation of the

8

Figure 3.2: Camera Model

camera in the World Frame. These parameters change as the camera’s position and

orientation change.

Figure 3.3 provides an illustration of the extrinsic parameters, and Figure 3.4

shows the intrinsic.

We used an approximated guess for the intrinsic parameters instead of calcu-

lating the intrinsic parameters using OpenCV [11]. Calculating the intrinsic values

would have required adding another calibration step to our process and a different

calibration pattern that works with OpenCV. We were able to come up with an

approximation that provided us with accurate results.

The camera model provides a function, V (P), that converts points in the

World Frame to points in the Image Frame. The function takes a point in the World

Frame, P , as input and returns a 2D image point, q. The function uses a perspective

transform, C, and a rotation plus translation matrix, [R|T]. The perspective, C,

is intrinsic, and the [R|T] is extrinsic. The following equations show how V (P)

transforms P to q:


u

v

w

 = C[R|T]P (3.1)

9

Table 3.1: Camera parameters

Parameter Description

Intrinsic (u0, vo) Center of the image projection, usually close to
(W/2, H/2), where W is the width of the image and
H is the height.

(α, β) Represents the combination of the focal length, the
aspect ratio, and the scale up to image coordinates.

γ The skew in the camera

Extrinsic R The camera’s rotation matrix relative to the World
Frame

T The translation of the camera relative to the World
Frame represented as a vector.

Figure 3.3: Extrinsic Properties of the Camera.

10

Figure 3.4: Intrinsic Properties of the Camera.


u

v

w

 =


α γ u0

0 β v0

0 0 1




Rx0 Rx1 Rx2 Tx

Ry0 Ry1 Ry2 Ty

Rz0 Rz1 Rz2 Tz




Px

Py

Pz

1

 (3.2)

q = (u/w, v/w) (3.3)

The extrinsic parameters map a point in the World Frame to a point in the

Camera Frame. The intrinsic parameters map a point in the Camera Frame to a

point in the Image Frame. Figure 3.5 illustrates the relationship between the three

reference frames.

3.3 2D Feature Detection

In this section, we describe how to find the features in the 2D image. The projection

of the pattern causes the 3D circles to project as ellipses. The image is scanned to

find the pixels that lie on the ellipse boundaries. The color of the pixels along the

ellipse borders are used to determine which ellipse was found. The border points are

then passed to an ellipse-fitting routine.

11

Figure 3.5: Relationships between reference frames.

3.3.1 Image Scanning

Image scanning is used to find the points in the image that fall on the borders of the

chromaglyphs. The scanning classifies features in the image by color ratios. The colors

chosen for the chromoglyphs are located in different corners of the color space [15].

Each color has a maximum or minimum concentration of red, green, or blue. Because

of this, the colors are still distinguishable under different lighting conditions. For

example, for a red pixel, the portion of red will always be greater than the portions

of green or blue.

The scanning software acquires a buffer of pixel color values from the digital

camera. This buffer is a snapshot of what the camera currently sees in its field of

view. Each pixel in the buffer is then assigned one of the five prototype colors (red,

green, yellow, black, or blue). If the pixel color cannot be determined, it is labelled

as unknown.

The scanning software picks a pixel that is one of the four prototype colors

as the starting point for a flood-fill search. The search returns a connected region of

pixels that lie on the border of the ellipse. For example, when a red pixel is found, the

flood-fill search will look for all of its neighboring red pixels that border blue pixels

(see Figure 3.6).

12

Figure 3.6: The red pixels that border the blue pixels are detected.

Since low-resolution cameras are being used, blurring can occur along the el-

lipse borders. This causes some of the pixel colors to be unidentifiable. The color

value for these pixels is labelled ‘unknown’. When one of these unknown pixels is

found during the flood-fill search, a color check of the unknown pixel’s neighbors is

performed. If one of the unknown pixel’s neighbors is a different color, then it can

be assumed that this pixel lies on the border. This technique allows for a thin line of

blurring along the ellipse borders.

We first search for the outer border points. When the flood-fill search is com-

plete, the center of the ellipse is calculated using the outer border points. This is also

the center of the inner ellipse. The color of the inner ellipse is then identified by the

center point’s color. The color of the outer and inner discs provide the identity of the

chromaglyph. A flood-fill search is then performed on the inner circle to obtain the

inner ellipse border points.

The entire image is scanned in this fashion to identify all of the chromaglyphs

that are in the field of view. When the scanning is finished, the border points for

the visible ellipses are passed to the ellipse fitting algorithm. Table 3.2 lists the

pseudocode for the image scanning algorithm.

3.3.2 Ellipse Fitting

Once an ellipse’s border points have been identified, we can fit an ellipse to them.

There are many approaches to ellipse fitting. The method used in this application is

13

Table 3.2: Image Scanning Algorithm

for each pixel in image do
if pixel is one of the Prototype Colors AND pixel has not been scanned then

Set scanned flag for this pixel to TRUE
Outer border points = Perform flood-fill search on pixel setting scanned
flag for each pixel scanned to TRUE
Centroid = Calculate the centroid of the outer border points
Inner border points = Perform flood-fill search on Centroid setting scanned
flag for each pixel scanned to TRUE
Glyph ID = permutation of pixel color and Centroid color
Store inner and outer border points for the glyph identified by ID

end if
end for

the one developed by Fitzgibbon, Pilu and Fisher [4]. The method finds the coeffi-

cients to the implicit equation of a conic:

F (x, y) = ax2 + bxy + cy2 + dx + ey + f = 0 (3.4)

The equation above can also be expressed as F (a, x) = ax, where a = [a b c d e f]T ,

and x = [x2 xy y2 x y 1]T . The method finds the coefficients of the conic equation by

solving the following eigenproblem:

DT Da = Sa = λCa (3.5)

where D =[x1 x2 ... xn]T . The vectors, x1...n, are the different observation points.

In our case they are the eight points on the ellipse borders. S is the scatter matrix,

S = DT D, and C is the ellipse constraint, b2 − 4ac = −1 in matrix form:

C =



0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.6)

The above eigenproblem must meet the following equality constraint:

14

Table 3.3: Ellipse Fitting Algorithm [4]

–Build Design Matrix
for each point on the ellipse border do

D[i] = [pt.x * pt.x, pt.x*pt.y, pt.y*pt.y, pt.x, pt.y, 1]
end for
–Build scatter matrix
S = DT * D
–Build 6x6 constraint matrix
C = matrix in equation 3.6
–Solve generalized eigen-system
eV = SolveEigenSystem(S,C)
–Find the eigen values that satisfy b2 − 4ac < 0
for i = 0 to 6 do

if eV [i][1] ∗ eV [i][1]− 4 ∗ eV [i][0] ∗ eV [i][2] < 0 then
return eV[i]

end if
end for

aT Ca = 1 (3.7)

The eigenproblem has three non-trivial solutions, but only one satisfies aT Ca = 1.

The eigenvalues and eigenvectors that solve the eigenproblem can be processed to

obtain the solution for a [4].

The fitting is performed on each set of border points, which produces up to 16

sets of ellipse equation coefficients. Only the ellipses that are visible in the current

image are used. Thus, there can only be up to 16 used at one time. These equations

are used in the camera parameter search stage. Table 3.3 lists the pseudocode for the

ellipse fitting algorithm.

3.4 Camera Parameter Search

The final step in the camera calibration process is the search for the camera model

parameters that map the 3D circles (z = 0) to the ellipses found in the image. We

know the points, P , on the 3D circles, and pick a subset of them to use for the search.

We used eight points per ellipse (see Figure 3.1).

15

As the drawing surface is oriented in front of the camera, the calibration pattern

that the camera sees gets warped. The 3D border point, P , can be mapped to a 2D

image point, q with the following equation:

q = V (P) (3.8)

where V is the camera model function described in section 3.2. If T and R represent

the camera’s true orientation, then the points should lie close to the ellipses found

in the image scanning step. This means that the ellipse equation, Fe(qx, qy), should

evaluate to a value that is close to zero when using these points.

The goal of the search is to find the values of T and R that minimize (Fe)
2.

We created an error function, E(T, R), that we are trying to minimize. The function

takes values of T and R as input. For each ellipse that was visible in the image,

the function converts its corresponding border points in the World Frame, Pe, to

2D points in the Image Frame. The corresponding ellipse function Fe(qx, qy) is then

evaluated for each of these converted 2D points. The results are squared and summed

for all eight points. The equation for E(T, R) is as follows:

E(T,R) =
n∑

e=1

8∑
i=1

[Fe(V (Pei))]
2 (3.9)

where n ≤ 16 is the number of ellipses found in the image scan and Pei is the ith

point on the eth ellipse. We require a minimum of three and use a maximum of

eight. More than eight could be used, but eight was chosen to reduce computation

time. The search begins with a guess at the values of T and R. If E (T , R) does not

evaluate to a value that is close to zero, then T and R need to be modified in some

way. A Simplex Search [13], also known as the Amoeba Search, is used to minimize

E(T, R). For the Simplex Search, T is represented as a translation vector [x, y, z]T .

R is represented as three rotation angles around the x, y, and z axes of the World

Frame.

A Simplex Search is a multidimensional minimization, which means that it

finds the minimum of a function of more than one independent variable. In our case

we have six independent variables, the three components of the vector T , and the

three rotation angles that make up R. The Simplex Search uses the downhill simplex

method which requires only function evaluations, not derivatives. A Simplex can be

thought of as a geometric figure in N dimensions, consisting of N + 1 points. In our

case, N = 6, for the six input variables we have for E(T,R). The algorithm starts by

16

taking an initial guess of N + 1 points. These points define the starting shape of the

simplex. In our application we use our initial guess for T and R as the starting point.

We then create N more points by adding a constant to each independent variables.

We now have a vector of size N + 1 that contains the initial points for the simplex.

The algorithm then tries to find the minimum in the N -dimensional topography [13].

The downhill simplex method takes a series of steps to find the minimum of

the function. Most of these steps involve moving the point of the simplex where

the function is the largest through the opposite face of the simplex to a lower point.

These types of steps are called reflections. When possible, the method expands the

simplex in one direction or another to take larger steps. When it reaches a valley

floor, the method will contract the simplex in the transverse direction and try to

squeeze through the valley. This type of behavior is why the method is often referred

to as the Amoeba Search [13].

The termination criteria for the search is when the vector distance moved in

one of the steps is less than some tolerance value. In our application, we use a

tolerance value of 0.000001. The number of iterations needed to find the minimum

in the initial search is approximately one hundred. Subsequent searches are started

using the previous values for T and R; they converge with about thirty iterations. If

the display surface’s orientation does not change much, the searches will take about

ten iterations. Table 3.4 lists the pseudocode for the Simplex Search.

3.5 Calculating the Drawing Surface’s Rotation and

Translation

When the values for T and R are found, they represent the position and orientation

of a movable camera in the World Frame. The drawing surface is assumed to be

located at the origin of the World Frame. In the real world, the camera is stationary

and the drawing surface is moving. We want to know the position and orientation of

the drawing surface in the World Frame. We had to devise a way to use T and R to

determine the position and orientation of the drawing surface. This problem is easier

to explain through the use of an example.

Figure 3.7 illustrates a scenario that can occur in our application. In the

real world, the drawing surface is rotated by θ degrees. When we apply our camera

calibration technique, we obtain values for T and R that represent the scenario in the

17

Table 3.4: Simplex Search Algorithm [13]

while TRUE do
for i = 1 to Number of points in simplex do

Determine which point is the highest (worst), next-highest, and lowest
(best) by evaluating the function for each point.

end for
Compute the fractional range from the highest to the lowest point and see if
it is below the tolerance value
if Range < Tolerance then

return the lowest point in the simplex
end if
Extrapolate highest point in the simplex through the opposite face
if Reflected point < Current Lowest Point then

Try an extrapolation by a factor of 2
else if Reflected Point > Current Lowest Point then

Do a one-dimensional contraction from the high point
if Contracted Point > Highest Point then

Unable to get rid of high point, so contract around the lowest point
end if

end if
end while

18

Figure 3.7: The relationship between a change in the real drawing surface’s orientation
and the virtual world.

lower half of the figure. The camera model is rotated by the same θ degrees that the

drawing surface was in the real world. The rotation is just in the opposite direction.

As one can see from the figure, the camera model is also translated to a new position

in the World Frame.

To calculate the orientation of the drawing surface in the virtual world, we

simply have to take the inverse of the matrix defined by R. However, we cannot

apply −T to the drawing surface. From the example above, we can see that this will

apply a translation to the virtual drawing surface’s position in the World Frame. The

only movement that occurred in the real world was a change in the drawing surface’s

orientation. There was no change in the position.

To handle this situation, we calculate the change in the camera model’s focal

point. If the drawing surface is translated in the real world, the focal point of the

camera model will change by the same amount in the virtual world. Before the

Simplex Search is performed, we save the original focal point, forig. The Simplex

Search is then executed and the new focal point, fnew, is retrieved from the camera

model. A vector that represents the translational position of the drawing surface in

19

Figure 3.8: The relationship between a change in the real drawing surface’s position
and the virtual world.

the world frame is then equal to −(fnew − forig). We will refer to this translation

vector as Td. Figure 3.8 illustrates this scenario.

We now have a way to describe the position and orientation of the drawing

surface in the World Frame. A rotation plus translation matrix that defines this

transformation can be expressed as [R−1|Td]. Which can be expressed as [RT |Td]

since R is orthonormal.

3.6 Some Lessons Learned

Initially, we tried representing R as a quaternion in the minimization search. Quater-

nions are not the best representation for searching. They have the property of unique-

ness, but there is an interdependence in the coordinates because of the normalization

step. The choice was then made to use 3 rotation angles. The angles do not have

the uniqueness property, but they are independent of each other. This property was

needed in order to perform a successful search.

The translation error is also not uniform in all dimensions, as can be seen by

examining equation 3.3. Note that the image point changes as a function of x, y, 1/z,

20

since w is a function of z. One other thing to note is that the rotation and translation

are linked under normal movements. Positioning the camera relative to the drawing

surface results in a transformation that is both a rotation and a translation.

21

Chapter 4

Laser Pointer Tracking

We use a red laser pointer to sketch on the display surface. The inner region of the

display surface is transparent. This allows a laser pointer to shine through and be

detected by the camera. To indicate an input action, the user positions the drawing

surface at the desired location, and then turns on the laser pointer so that it is shining

through the transparent region. The image scanning will find the location of the laser

pointer, as the centroid of the red spot, in 2D image coordinates. This location is then

converted to a 3D world coordinate relative to the current position of the drawing

surface. This chapter describes the procedure for how to track the pointer in 2D

image space and how to calculate the 3D input location.

4.1 Finding the Laser Pointer in 2D Space

In addition to looking for ellipse boundary points, the image scanning also looks for

the laser pointer. The 3D corner points of the drawing surface, D1−4 (see Figure 3.1),

can be converted to 2D points in the image frame using the camera model’s conversion

function, V:

di = V (Di) (4.1)

After the extrinsic parameters R and T are found, D1−4 can be converted to

d1−4. Then the red pixels that were found in the image scan can be tested to see if

they fall within the region defined by the corner points. This is done to separate red

laser spot pixels from red ellipse pixels. To test to see if a 2D screen point (xp, yp)

falls within a polygonal region defined by di, consider a horizontal ray emanating

22

from (xp, yp) and going to the right. If the number of times this ray intersects the line

segments making up the polygon is equal to one, then the point is inside the polygon.

Otherwise, if the number of intersections is greater than one, then the point (xp, yp)

lies outside the polygon.

Figure 4.1: Convex polygon test.

If a red pixel passes this polygon test, then it is stored. After all of the red pixels have

been tested, the centroid, ppen, of the stored pixels is calculated. ppen is the location

of the laser pointer in the Image Frame.

4.2 Calculating the 3D drawing location

Once ppen is found, we calculate the corresponding 3D point in the World Frame.

ppen is converted from a point in the Image Frame to a point, P3D, by applying the

inverse of the camera model function, V . The vector L points from the location of

the camera in the World Frame to P3D (see Figure 4.2). The equation defining P3D

is:

P3D = E + tL (4.2)

23

Figure 4.2: Tracking the laser pointer in 3D space.

where E is the location of the virtual camera in the World Frame. The value of E is

obtained from the camera model. Because the drawing surface is sitting at z = 0 in

the World Frame, the following is true:

Ez + tLz = 0 (4.3)

Solving for t:

t = −Ez/Lz (4.4)

The equation for the 3D laser point in the World Frame is therefore:

P3D = E + (−Ez/Lz)L (4.5)

This 3D point, P3D, corresponds to the point when the drawing surface is at

z = 0 in the World Frame. The point needs to be transformed to the current location

of the drawing surface in the World Frame. To do this, we multiply P3D by the

transformation matrix, [RT |Td], that we found in Section 3.5. Now we can track the

laser pointer as it moves in the World Frame.

24

Chapter 5

Sample Drawing Application

This chapter provides a description of a drawing application that uses the 3D input

device. The drawing application allows the user to make characters by sketching

ellipses. The 3D input device lets the user create these characters in a more intuitive

manner. The drawing application creates a virtual rendering of the drawing surface

and displays this to the user. As the user positions the real drawing surface, the

virtual one mirrors its movements. A laser pointer is used to sketch out ellipse shapes

on the drawing surface. The application uses the 3D data from the input device to

create an ellipse shape in the virtual scene. The application consists of two virtual

display windows that provide the user with different views of the virtual scene.

5.1 Virtual Display Windows

The virtual display consists of two windows that are displayed on the computer moni-

tor. The first window is a re-creation of the 2D drawing surface (see Figure 5.1). The

user can also see the cross-section of any shapes that the drawing surface is currently

intersecting. While the user is drawing with the laser pointer, a trace of the pointer’s

movement is rendered on the virtual surface with a series of yellow dots.

The other window shows the 3D virtual scene. In this window, the user can

see the virtual drawing surface’s orientation in 3D space relative to the world. The

virtual drawing surface’s position and orientation in the world frame is calculated by

applying the transformation matrix, [R−1|Td], to the virtual drawing surface’s starting

position (see Section 3.5). Three virtual walls are also rendered to provide a sense of

depth (see Figure 5.2).

25

Figure 5.1: The virtual drawing surface window.

Figure 5.2: The virtual scene window.

26

Table 5.1: 3D Input Device Events to Mouse Events

Mouse Event 3D Input Device Event
Mouse Button Down When the laser pointer is turned on for the first time.

Mouse Move When the laser pointer is on and the location changes.
Mouse Button Up When the laster pointer is turned off after being on.

5.2 Character Creation

Because this application does not use a mouse, the typical mouse events have to be

mapped to the actions of the 3D Input Device. Table 5.1 lists the mapping of the

typical mouse events to 3D Input Device events.

The drawing application receives the 3D points from the 3D input device as

Mouse Move events. These points indicate where the laser pointer is at in the World

Frame (see Section 4.2). The drawing application renders these points as small dots

that appear in the window with the virtual drawing surface. These points provide

feedback that lets the user know what kind of shape is being drawn.

When the application receives the Mouse Button Up event from the input

device, it fits an ellipsoid to the 3D points. This ellipsoid is then rendered in the

virtual scene. The user can join ellipsoids to create 3D characters. The characters

can also be saved to a file and opened later for editing.

5.3 Pie Menus

Pie menus [12] are used in the drawing application to allow the user to change program

settings and perform certain actions (see Figure 5.3). Each piece of the pie is a single

menu action. Some actions bring up sub-menus that appear on top of the parent

menu. The sub-menu is simply another pie menu that appears on top of the parent

menu. The pie menu is brought up by shining the laser pointer in the lower left corner

of the drawing region. When a menu item is selected, the pie menu is taken off the

screen.

The user can select between the different menu items by turning on the laser

pointer and moving it to the location of that item in the pie menu. While the user is

moving the active laser pointer around, the 3D Input Device will be sending Mouse

Move events to the drawing application. This allows the drawing application to

determine which menu item the laser pointer is currently located on. The currently

27

Figure 5.3: Pie menus.

selected menu item will be highlighted. When the desired menu item is highlighted,

the user turns off the laser pointer. This triggers the Mouse Button Up event in the

drawing application. The selected menu item is then executed.

The pie menus work well with the 3D input device. After continued use,

the user grows accustomed to the location of certain menu items. Actions can be

completed quickly with little input device movement required by the user.

28

Chapter 6

Results

6.1 Accuracy

The accuracy of the image scanning, ellipse fitting, and camera parameter searching

was tested using a simulated version of the calibration pattern. A virtual camera

is positioned at different orientations to view the display surface. The actual values

for T and R are known in this case. The camera takes a snapshot of the scene

and the ellipse search is performed. The starting point for the search is always

T = (0, 0, 5), R = (0, 0, 0). The tests were run on a set of 1,000 camera positions.

We wanted another case to compare our results to. So we took the known

points on the ellipse borders in the World Frame and converted them to points in

the Image Frame using the known values of T and R. This gives us points that lie

directly on the ellipse borders in the image. We then used these points and performed

the ellipse fitting and camera parameter search steps to get values for T and R.

Now for each of the 1,000 camera positions we have two sets of converged values

for T and R. One is from performing the full ellipse search calibration method. The

other set is from using the known ellipse border points instead of finding them in the

image scanning steps. This creates the correct projected ellipses and removes error

due to ellipse fitting.

We compared the converged values of T and R with the actual values of T and

R. The values for the components of T are normalized to the range [-1 to 1]. R is

broken down into three rotation angles around the x, y, and z axes. We also evaluated

the error function, E(T, R), using the two sets of values for T and R.

The following is a series of graphs that shows the results from this test. Fig-

ures 6.1 and 6.2 show the average difference between the converged values of T and

29

Figure 6.1: Results from Accuracy Test with the Scanned Points

the actual value of T . The average error is shown for the x, y, and z components

of T . The data is broken down to show the average error per the number of ellipses

that were detected in the image for that camera position. Figures 6.3 and 6.4 show

the average difference between the converged values of R and the known value of R

in degrees. That data for these two figures is broken down in the same manner as

the first two figures. The last graph, Figure 6.5, shows the results when evaluating

E(T,R) using both sets of converged values for T and R.

One can see from the graphs that the average error gradually decreases as the

number of ellipses increases. This would be expected since an increase in the number

of ellipses provides the calibration method with more data to use in the minimization

of the error function. It is also interesting to note in the last graph that the evaluated

value of E(T, R) goes down to almost zero for the known border points. It remains

almost constant for the scanned points. One could infer here that the Simplex Search

just reaches the minimum tolerance value for the scanned points, while the known

points provide better results. This too would also be expected since we are using

the actual ellipse border points from the Image Frame which should provide more

accurate results.

Another point worth mentioning is that the Simplex Search finds a way to reach

the tolerance value in some cases where there is a large error between the converged

30

Figure 6.2: Results from Accuracy Test with the Known Points

Figure 6.3: Results from Accuracy Test with the Scanned Points

31

Figure 6.4: Results from Accuracy Test with the Known Points

Figure 6.5: Results from Accuracy Test

32

and known values of T and R. This could be the case where a slightly different

translation or rotation minimizes the error function as well as the correct values.

6.2 Real World Tracking

The accuracy of the ellipse search calibration method was compared to the OpenCV

method [11]. A 5×7 checkerboard pattern was placed in the center of the calibration

pattern. The ellipse search and the OpenCV calibration methods were then performed

on a set of 10 images of size 640 × 480 pixels. The 10 images were snapshots from

the digital camera of the drawing surface at different orientations (see Figure 6.6).

E(T,R) was evaluated with the values of T and R found from both the ellipse

search and the OpenCV method. The 3D coordinates of the 24 interior checkerboard

corner points were measured. These points were then converted to 2D points in the

Image Frame using V () with the values of T and R from the ellipse search and the

OpenCV methods. These 2D points were then compared to the 2D corner points that

were found in a scan of the image. The average pixel distance between the calculated

and scanned points was calculated for each image.

Table 6.1 provides a summary of the results from this test. The average value

of E(T,R) was lower for the ellipse search method than the OpenCV method. This

is expected, since the ellipse search parameters are found by finding the minimum

of E(T, R). The average pixel distance for the checkerboard corners is lower for the

OpenCV method than for the ellipse search method. One would expect the OpenCV

results to be lower in this area because the OpenCV process is based on finding the

interior checkerboard points. Another reason why the OpenCV results are better than

the ellipse search is that the OpenCV method used the actual intrinsic parameters

of the camera. We used our approximated guess for the intrinsic parameters in the

ellipse search method. The overall performance of the 3D input device could be

improved by incorporating a method for calculating the actual intrinsic parameters

of the camera.

Figure 6.6 shows four of the input images used in the test. The green dots on

the image represent the corner points that were converted to 2D image points using

the ellipse search values for T and R. The red dots are the points that were converted

using the OpenCV values for T and R.

33

Table 6.1: Real World Tracking Results

Avg Min Max Std Dev

E(T,R) with Ellipse
Search

0.0000104 0.00000976 0.0000111 0.000009742

E(T,R) with
OpenCV

0.0000531 0.0000455 0.0000606 0.0000107

Pixel Error with El-
lipse Search

8.192 6.697 9.6855 2.112

Pixel Error with
OpenCV

0.6007 0.5996 0.6017 0.00159

Figure 6.6: Real World Tracking Test Images.

6.3 Performance

The current system runs at approximately 10 fps on a 356MHZ Pentium, using 120×
160-sized images. The current bottleneck is the image scanning routine; hence the

small image sizes. We filter the positions and orientation of the plane by taking the

average of values from the previous two frames. This helps to reduce some of the

noise in the converged values.

34

Chapter 7

Future Work

7.1 Performance Improvements

Improving the performance of the image scanning algorithm would greatly improve

the current frame-rate. The linear search that we are currently using is not efficient.

A history of the border points could be kept and used as starting points for the

next iteration of the image scanning. This would allow the image scanning software

to find the border points without having to scan the entire image.

Enhancements in the computational performance of the image scanning algo-

rithms would allow for the use of a larger resolution image. The current image being

used is 120 × 160 pixels. The motivation behind such a small image size was to

minimize the number of pixels that had to be scanned.

As mentioned in Chapter 6, the use of the actual intrinsic parameters should

improve the performance of the input device. A method for calculating this param-

eters using standard techniques could be incorporated into the device. Doing this

should improve the overall accuracy.

7.2 Projector Use

Another enhancement would be to use a projector to display the image that is seen in

the virtual drawing surface window onto the actual drawing surface. The projected

image would be warped to map it correctly to the orientation of the drawing surface.

This would free the user from having to look at the computer monitor while drawing

shapes.

35

With this enhancement, the application could also be used for analyzing 3D

data sets. The user could simply move the display surface through 3D space and see

a cross section of the data set that gets projected onto the display surface.

7.3 Tablet PC

A new line of laptops called the “Tablet PC” are being developed [16]. This new

device resembles a regular laptop. The main difference is that the user can draw on

the LCD display with a stylus-type input device. The LCD display can be rotated

around so that it is facing up when the laptop is closed. A Tablet PC could be used

in this application as the drawing surface. The calibration pattern would be put on

underside of the Tablet PC. This would allow the user to orient the PC in front of

the camera. The LCD display would then show the virtual display scene. This would

allow the user to directly interact with the virtual display. The orientation of the

laptop would determine the orientation of the virtual piece of paper. A laser pointer

would no longer be needed as an input device. This would be a more accurate way

of drawing shapes. Although, the weight of the laptop could make it difficult to use

as an input device.

36

References

[1] Ronald Azuma. A Survey of Augmented Reality. Presence, 6(4):355–385, 1997.

[2] Jose Miguel Buenaposada and Luis Baumela. Real-time tracking and estimation

of plane pose. In ICPR, pages 697–700, 2002.

[3] F. Dellaert, C. Thorpe, and S. Thrun. Super-resolved texture tracking of planar

surface patches, 1998.

[4] Andrew W. Fitzgibbon, Maurizio Pilu, and Robert B. Fisher. Direct Least

Square Fitting of Ellipses. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(5):476–480, 1999.

[5] George W Ftizmaurice and William Buxton. An Empirical Evaluation of Gras-

pable User Interfaces: Towards specialized, space-multiplexed input. In Com-

puter Human Interaction, pages 43–50, 1997.

[6] George W Ftizmaurice, Hiroshi Ishii, and William Buxton. Bricks: Laying the

Foundations for Graspable User Interfaces. In Computer Human Interaction,

pages 1–8, 1995.

[7] Beverly L Harrison, Kenneth P Fishkin, Anuj Gujar, Carlos Mochon, and Roy

Want. Squeeze Me, Hold Me, Tilt Me! An Exploration of Manipulative User

Interfaces. In Computer Human Interaction, pages 17–24, 1998.

[8] Ken Hinckley, Randy Pausch, John C Goble, and Neal F Kassell. Passive Real-

World Interface Props for Neurosurgical Visualization. In Computer Human

Interaction, pages 452–458, 1994.

[9] H. Ishii and B. Ullmer. Tangible Bits: Towards Seamless Interfaces Between

People, Bits, and Atoms. In Computer Human Interaction, pages 234–241, 1997.

37

[10] Q. JI, M. COSTA, R. HARALICK, and L. SHAPIRO. An integrated linear

technique for pose estimation from different features, 1999.

[11] OpenCV: http://www.intel.com/research/mrl/research/opencv/.

[12] Pie Menus: http://www.piemenus.com/.

[13] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Downhill Simplex Method in Multidimensions. In Numerical Recieps in C,

pages 408–412, 1992.

[14] Polhemus: http://www.polhemus.com/home.htm.

[15] Andrei State, Gentaro Hirota, David T. Chen, William F. Gar-

rett, and Mark A. Livingston. Superior Augmented Reality Reg-

istration by Integrating Landmark Tracking and Magnetic Track-

ing. Computer Graphics, 30(Annual Conference Series):429–438, 1996.

http://www.hpl.hp.com/personal/Bruce Culbertson/ibr98/chromagl.htm.

[16] Tablet PC: http://www.microsoft.com/windowsxp/tabletpc/default.asp.

[17] Zhengyou Zhang. Flexible Camera Calibration by Viewing a Plane from Un-

known Orientations. In ICCV, pages 666–673, 1999.

[18] Zhengyou Zhang, Ying Wu, Ying Shan, and Steven Shafer. Visual Panel: Vir-

tual Mouse, Keyboard and 3D Controller with an Ordinary Piece of Paper. In

Perceptive User Intefaces, 2001.

38

Vita
Mark A. Schroering

Date of Birth October 15, 1976

Place of Birth Jasper, Indiana

Degrees B.S. Magna Cum Laude, Computer Science, May 1999

May 2003

	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: WUCSE-2003-20
	Notes:
	Title: A Thesis on a 3D Input Device for Sketching Characters - Master's Thesis, May 2003
	Author: Authors: Schroering, Mark A.
	Date: April 17, 2003
	Email:
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: 314-935-6160
	Footer1: Department of Computer Science And Engineering - Washington University in St. Louis

