

Technical report WUCS-2002-9: Creating View-dependent Texture Maps

Cindy Grimm
Department of Computing Science
Washington University in St. Louis

Michael Kowalski
Department of Computer Science

Brown University

Abstract
We present a technique for blending multiple images of

an object into a single, view-dependent texture map for
that object. This technique can be used for image-based
rendering, when the object is known, or for “painting” a
view-dependent texture map of an object. The technique
provides a structured mechanism for combining images
at different resolutions, producing a mip-map like struc-
ture with the different levels constructed from different
images. The user controls the camera angles for which
a given image is valid. The problem of gaps caused by
self-occlusion and non-overlapping images is also dealt
with. This technique is also suitable for use on an object
that will be animated.

Key words: Texture mapping, Surface, Solid, and Object
Representations, Splines, Image-based rendering

1 Abstract

2 Introduction

In this paper we present a technique for blending multi-
ple images of an object into a single view-dependent tex-
ture map for that object. This problem arises from image-
based rendering when the object’s geometry is known or
can be approximated [2][13]. The images are used to sim-
ulate lighting effects produced by camera changes. In
this case, much more accurate results can be achieved by
blending on the surface of the object, rather than interpo-
lating the images themselves.

The current approach for blending images on the sur-
face of the object creates a texture map for each image
and then alpha-blends the texture maps depending upon
the current camera orientation. The algorithm in this
paper provides a more structured approach that behaves
well even in the presence of self-occlusion and images
with different resolutions. The algorithm fills in gaps
caused by self-occlusion, non-overlapping images, and
uneven mapping of the object to image space. Explicit
control over the valid range of camera angles for a given
image is also provided. The technique incorporates a ver-
sion of mip-mapping where it is possible to use specific
“closer” and “further” images to override the standard
blending produced by mip-mapping.

This paper also combines the ideas of image-based ren-
dering with 3D painting [7], allowing the user to “paint” a
view-dependent texture map instead of, or in addition to,
using captured images. 3D painting of view-dependent
texture maps allows the artist to paint effects that come
and go based on the camera orientation and depth. To
support 3D painting the algorithm employs two interme-
diate data structures, a view-dependent one and a view-
independent one (essentially a base-coat). The user has
additional control over how much the base-coat or view-
dependent data shows through for a given camera angle.
The view-independent data can also be used in the image-
based rendering application to provide default colors for
the object when no suitable image is available.

The basic outline of the algorithm is as follows. In a
pre-processing step the images are blended and resam-
pled into the dependent and independent data structures.
At render time, the texture map of the object is col-
ored using the intermediate data “indexed” by the current
camera location. The intermediate data is hierarchical,
with each layer covering the entire surface in smaller and
smaller pieces.

In the next section we discuss related work. In sec-
tion 4 we define the notions of depth, how to divide the
surface up, and how to map from the surface to the im-
age. Following this, section 5 gives a summary of the
data structures used. Section 6 describes the algorithm
for filling in the intermediate data structures. Section 7
describes how to fill in the texture map from the inter-
mediate data. In section 8 we briefly describe the simple
interface used to make the hand-painted examples.

3 Related work

View dependent texture maps for image-based rendering
can be found in [2][3][13]. Each image forms a texture
map and the texture maps are alpha blended depending
upon which ones are closest to the current view. The
technique described here expands on this idea to provide
more control over the process. Other image-based ren-
dering papers incorporate knowledge of the object to im-
prove interpolation [16][2][5]. The paper [11] changes
the texture map of the object based on viewing direction
to correct for distortion. With this technique a brick-wall

Figure 1: Meshes constructed for each layer of cells. The
level zero mesh has six cells, one for each face. The cells
are split into four to produce the next layer.

texture will appear 3D. None of the image-based render-
ing papers deal directly with changes that happen when
the camera moves closer or further away from the object,
or provide more specific control for hand-painted images.
For these types of effects we turn to non-photorealistic
rendering.

One of the first papers to indirectly introduce the con-
cept of depth dependent effects was [15] with the con-
cept being refined in [9]. In these papers, the density of
the strokes on the surface was determined by the cam-
era’s proximity to the object and the image size. A simi-
lar notion of depth for procedural textures was introduced
in [12]. In [8] the authors introduce a technique for mip-
mapping painted or stroke-based textures. We use ideas
similar to the above for depth and mip-mapping.

The idea of painting directly on an object to produce a
texture map was introduced in [7] and is now available in
most commercial systems. This paper extends this notion
to hierarchical and view-dependent texture maps.

4 Preliminaries

Before discussing the data structures and algorithm in
detail, we first define two concepts which will be used
throughout the paper. The first concept is called acell,
and is used to divide up the surface into discrete regions.
The second concept we define is a version of depth which
depends upon both the camera distance and the image
size. We then define how we establish the object to image
correspondence using cells and depth.

A note on terminology: The termview will be used
throughout the paper to encapsulate the camera position,
image size, and actual image plus an alpha mask. We use
the alpha channel of the image to determine what part
of the image is to be blended into the intermediate data
structures.

4.1 Division of the surface into cells
Informally, a cell is just a portion of the surface. Alayer
of cells is a collections of cells such that every point on
the surface is in exactly one cell. We construct several
layers of cells so that they form a hierarchy,i.e., each cell

in layeri is the union of some of the cells in layeri + 1.
An example of layers zero through four of a spherical
surface can be seen in Figure 1.

More formally, we require that the surface be partition-
able into relatively evenly sized pieces. By partitioned,
we mean that each point on the surface belongs to exactly
one cell, where each cell is a mapping from a portion of
the surface to a disk in<2. This mapping must be 1-1
and onto. Ideally, the surface areas of the cells should be
roughly equal. Similarly, their domains (the disks in<2)
should be the same size1. Otherwise, the resolution of the
surface will vary. The collection of cells is called a layer.
We also place restrictions on the layers, namely that they
be hierarchical. The simplest way to achieve this is to de-
fine the lowest layer of cells, layer 0, and produce the next
layer by subdividing the cells of layer 0. This produces a
nested set of layers.

To produce the meshes in Figure 1 we made a mesh
with one face per cell for each layer. The vertices are
located on the corresponding cell corner on the surface.
We call these meshes theid meshesbecause we use them
to identify which pixel in an image belongs to which
cell [14].

Cell layers for sample surface types
For our implementation we usedmanifold surfaces[6]
because the implementation is already structured to sup-
port cells; however, subdivision, spline or polygonal sur-
faces will work as well. The zero layer of cells is cre-
ated by making a single cell for every vertex chart. We
subdivide these cells by splitting each cell into four (see
Figure 1). For a given surface we tend to produce a maxi-
mum of 3 to 6 layers of cells, depending upon the desired
resolution.

A similar scheme works for Catmull-Clark subdivision
surfaces, using the quads produced by the first level of
subdivision as the layer zero cells. For Loop subdivi-
sion surfaces the cells must be split using a triangular cell
division scheme. Spline surfaces can use the individual
patches as the layer 0 cells.

For arbitrary meshes, the techniques described in [1]
or [10] could be modified to produce the layer 0 cells.

4.2 Defining depth
The usual notion of depth is the distance from the camera
to the object. In the real world, this corresponds to the
object taking up more (or less) of our visual field, with
a corresponding gain (or loss) of detail. In our case, the
viewer (the OpenGL window) can change the visual res-
olution of the object in two ways; either by changing the
camera distance or by changing the size of the window.

1It is possible to account for varying surface area size by adjusting
the size of the disks, but this introduces additional complexity.

Figure 2: A view direction and its four extreme points. The fade function is constructed by projecting the points onto
the plane and building a smooth “hat” function over the resulting polygon by placing the fade curve with its1 end at
the center of the projected view and its0 end on the boundary of the polygon.

To account for this we use a depth metric based on the
number of pixels the object occupies.

Ideally, the depthd of an image is the layeri mesh
such that each cell in the mesh covers exactly one pixel.
In general we will not have a perfect mapping. Instead,
we find the two bracketing layers,i andi + 1, such that
layer i has, on average, fewer cells then pixels and layer
i + 1 has more cells than pixels. The actual depthd lies
betweeni andi + 1 and is given below.

4.3 Mapping from image to object

We assign a cell from the bracketing id meshes to each
pixel in the view’s image. We do this using OpenGL.
Each face in the id mesh is assigned a unique id. This
value is then converted to an RGBA tuple. The mesh is
rendered using OpenGL with lighting and anti-aliasing
turned off. The RGBA values can then be read out of the
image buffer and converted back to their unique ids.

Rather than re-rendering the id image every time we
copy colors to the intermediate data, we cache the infor-
mation in the following form: For each visible cell, we
store a list of(x, y)i, pi image positions and percentage
values. Thepi are normalized to sum to one and rep-
resent the percentage each pixel in the list contributes to
the final cell color. We also store, for each visible cell, the
current color and the current alpha channel mask value,
as calculated using the above data.

To minimize gaps caused by the discrete nature of the
id image, we actually render the id images at twice the
resolution of the view’s image. For each pixel in the
double-sized id image we add1/4 of the corresponding
(x, y) pixel in the actual image (recall that we will nor-
malize these percentages).

To chose the bracketing layers we begin with the layer
zero id mesh, render, and count the average number of
pixels. We continue until the number of average pixels
drops below four (recall that our id images are double-
sized). At this point we returnd = i− (4− avg)/4.

The (x, y)i, pi data only needs to be computed once
for each bracketing layer. When the image changes, we
update the color and mask value assigned to each cell by
blending using the cached(x, y)i, pi values.

5 Data structures

In this section we define all of the data types

Views: A view consists of an image, camera informa-
tion, a depth as calculated in section 4.3, and a flag indi-
cating if it is a dependent or independent view.

Extreme points and fade curve: These are used to
define the range of camera views for which a given view-
dependent image is valid. The extreme points live on the
sphere defined by thefrom andat points of the camera
and indicate the extreme camera ranges (see Figure 2).
The fade curve indicates how fast the image should fade
out.

Object: The object with the cell structure as described
in section 4.1.

Blend points (Optional): A list of camera positions
with percentage values indicating the percentage of view-
dependent vs. independent data visible from that camera
position. These values are interpolated using a nearest
neighbor approach (see appendix A).

Independent data: Each cell in each level is assigned
an RGB value. These can be stored as portions of a tex-
ture map.

Dependent data: Each cell in each level is assigned
annXn array of RGB data representing the hemisphere
of color data. Mapping from the hemisphere to the square
is illustrated in figures 3 and 2 and the equations given in
appendix B.

Texture map: The texture map should have at least the
resolution of the highest level of cells. It is also useful to
store the 3D surface point for each texture map pixel to
speed up the view-dependent calculation.

Figure 3: Projecting from the hemisphere of directions to the plane. On the right we show the projection of two
different data sets; an evenly distributed set of data points generated from an icosahedron, and concentric rings taken
at evenly spaced longitudinal intervalsθ = π/2 to θ = 0.

6 Intermediate data

We first give a high-level view of the algorithm and then
expand on the individual steps.

To fill in the view-independent data we begin at the
highest depth level and work our way down to level 0.
Each view with a bracketing level at the highest level
first fills in all the cells it has data for. These colors are
blended where more than one view specifies a color. Any
missing pixels are filled in by their neighbors (if there are
any nearby neighbors).

To fill in the subsequent levels, we again ask any view
at the current level to fill in the cells it has data for. In-
stead of flood filling, however, we fill in missing data
from a filtered version of the previous level.

The view-dependent data is filled-in in a similar man-
ner. Each “pixel” is now a an array of data representing a
hemisphere of view directions. The views fill in only the
part of the hemisphere indicated by the extreme points.
This data is filtered and used in the next lower level. If no
data exists at either this level or the previous one then the
view-independent data for that cell is used.

6.1 Data filling
For the view-independent data we store a single color for
each cell. Note that if all of the independent views have
the same depth, then the layers of the independent data
would form a mip-map.

For the view-dependent data we store annXn square
of values at each cell representing the hemisphere of di-
rections at that cell. See Figure 3 for a pictorial example
of this, and Appendix B for the details of how we convert
from the global view directions to the unit square.

For each cell at layeri the view returns a color, blend
pair. This color is found as described in Section 4.1. The
blend value is the mask value multiplied by a percentage
based on the view’s depthd. If the view is bracketed by
layeri andi+1, the depth percentage for layeri is1−(d−
i). For layeri+1 the depth percentage is1− (i+1−d).

To fill in the intermediate data we simply query each
view at the appropriate depth and normalize the results.

For instance, a view at depth 2.3 would contribute 0.3 of
its color to the cell layer two and 0.7 of its color to the
cell layer three. If a second view had a depth of 2.9, the
cell layer at level three would be a blend of the two views,
0.3/1.2 of the first view, and0.9/1.2 of the second view.
This blending process is illustrated in Figure 4.

For the view-dependent data each cell “pixel” is an
nXn array of hemisphere data. The view returns, for
each element of the array, its masked color multiplied by
the depth percentage and with an additional multiplier,
the fade function value for that element. Again, the re-
sults are normalized. To produce a smoother blend into
the independent data, if the total sum of all the contribut-
ing views isα < 1, we also blend in1−α of the color of
the independent data at that cell.

6.2 Data filtering
If every cell in every layer is covered by some view then
we are done. However, in general there will be miss-
ing values. These can occur in one of two ways; either
a gap was left in a cell layer because the rendered cell
mapped to less than1/4 pixel, or there are no views in
that direction at that level. To address the first problem,
we “flood fill” from neighboring pixels. At the highest
level we propagate values up to half the level 0 cell size;
for lower levels we only propagate to the nearest cell.

To address the missing layer problem, we filter the next
higher level and use the filtered values in places with no
data. At the highest level missing data is simply set to
gray2.

The view-dependent data is filled-in in a very similar
manner except for how to deal with missing data. Each
layer has the same size array of hemisphere data for each
cell. We can filter these arrays by blending the four ar-
rays of the higher level, lining up the direction values. In
addition to filtering the colors we also filter the combined
percentages, as returned by the images. When filling in
missing data we only use the filtered version if the pre-

2It is possible to propagate the dataup the layers as well by up-
sampling the images.

Figure 4: How data is blended from two overlapping
views.

vious layer has a non-zero percentage at the cell array
value. For the remaining missing data we fill in with the
view-independent data for that cell at the same level. The
reason we only propagate non-zero filtered data is to pre-
vent “copying” the independent data down through the
view-dependent layers.

7 Intermediate data to texture map

At render time we use the intermediate data to fill in
the texture map. We index the view-dependent data by
the camera orientation and the layers by the new image’s
depth. We blend between nearby cell values, between the
two bracketing layers, and the hemisphere array data. In
all of these cases we blend using a linear function.

The reconstruction function we use is a normalized hat
function centered on each cell and extending half way
into its neighbor cells (see Figure 7). In areas where the
cells have a rectangular topology we do not need to nor-
malize and there will be at most four contributing non-
zero functions. For manifold surfaces this is the case
everywhere except at the vertex chart corners when then
number of faces meeting is not four. In this case we sim-
ply normalize.

We do this reconstruction for layeri and layeri + 1
and blend the results according to the new image’s depth.
Since the cell data is hierarchical, we can re-use most of
the computation by multiplying the cell indices by 2.

For the view-dependent data within a cell we use the
same reconstruction function on the array of hemisphere
data. The point to reconstruct is found by projecting the
vector from the current camera to the center of the texture
map pixel onto the hemisphere data using the equation
in Appendix B. If the point projects to the boundary or
beyond we take the closest pixel in the hemisphere array
data.

Figure 5: The texture mapped sphere showing the bound-
aries of the texture map division. On the right are shown
the texture maps for the vertex, edge, and face charts.

7.1 Texture map
To fill in the texture map we walk through all the texture
map pixels, recomputing their value based on the current
depth and vector to the camera. The vector to the camera
is taken to be the center of the texture map pixel minus
the camera point. This results in a nearly fixed cost per
frame (we do not compute values for back-facing pixels).
We can also decouple the rendering from the texture map
update, enabling interactive camera control even if the
texture update is not real-time.

A brief note on texture mapping for manifolds:
Since the original paper [6] does not provide details on
texture mapping for manifolds, we do so here. Each chart
is assigned a portion of the texture map covering the cen-
ter of the vertex chart, a vertical stripe down the edge
chart, and the center of the face chart. These areas corre-
spond to the tessellation, plus a pixel padding around the
outside. The texture maps will therefore overlap along
the boundaries of the tessellation. Figure 5 shows the
texture map for the sphere colored by the texture map ar-
eas.

8 A painting interface

The user interface is concerned with creating and edit-
ing paintings, not with the actual image creation. The
images are created using a paint program or are scanned
in. The interaction takes place using three windows. The
Results window displays the current object with the cur-
rent coloring. The object can be colored by coverage (see
Figure 6), by just the dependent views, or just the inde-
pendent views. The Painting window displays the current
image. Images are read and written from here. The Select
window shows the locations and directions of the views’
cameras relative to the object and the extreme points (if
any) for the selected view. The blend points and extreme
points are manipulated in this window.

9 Results

Figure 8 shows a fish with scales that come and go. The
fish runs at 2-5 frames per second on a 800MHz PC.
Internal update time is approximately 30 seconds when
adding a new view-dependent image. The highest layer

Figure 6: The sphere colored by how much each indepen-
dent view contributes. The viewing direction is from the
top; the regions boundaries are outlined for clarity.

is at depth four and the texture map has30X30 pixels per
vertex chart. There are 144 vertex charts. The average
size for the input images is270X220 pixels. There are
9 independent views and 4 dependent ones. There are no
depth-dependent effects.

Figure 9 shows a captured teddy bear. Nineteen pic-
tures of a teddy bear (called Stuffy) were taken using a
Faro arm, which gives accurate camera positions. The
pictures were used both as input images and to create ap-
proximate geometry of the object [4]. We constructed a
manifold and fit it to the approximate geometry.

Figure 10 shows a vase with a flower pattern. The pat-
terns are view-dependent and only appear when the cam-
era is facing them. There is an additional pattern used to
replace the main one when the object is far away. This
model has 278 vertex charts and is rendered at level 5.
There are three dependent views to specify the pieces
of the flower pattern and one view at level 3 to replace
the front flowers with a simpler pattern when the vase
is at a distance. Note that this object has significant self-
occlusion. The independent data consists of 10 views; the
shading has been painted in using the independent data.

10 Conclusion

There are several possible methods for creating view-
dependent effects on models. We chose to blend and store
the data on the object, creating this intermediate storage
for the data. The advantages of this approach are that ren-
dering time is constant and the model can be animated.
Since the data is on the object, even if we change the ge-
ometry of the object, for example, bend it or make it fat-
ter, the view-dependent effects will still occur at the same
camera angle relative to the surface normal. There are
two disadvantages to this approach. The first is that the
storage space is increased over simply storing the images.
Second, some detail may be lost or blurred both because
of the blending of the data on the object and the recon-
struction into the texture map. This second problem is
largely addressed by using double-sized id images, which
essentially gives us sub-pixel accuracy in the construction

of the intermediate data.
Additional problems we address by blending on the

object are aliasing and incorrect interpolation of images.
The latter problem goes away because we know the lo-
cation of the object so we can get exact pixel to pixel
correspondence between images. The aliasing problem
is more subtle and occurs when the re-sampled image
size is different than the sampling of the original images,
or if the input images have substantially different sam-
pling rates (usually because they were taken at different
“depths”). Because we fill in the entire texture map us-
ing a linear interpolation of the intermediate data, we will
never get gaps or stair steps in the coloring of the object
(unless there were no images of that part of the object).
The layers of the intermediate data also provide a form
of mip-mapping which can be automatic (if the user does
not specify any depth-dependent effects) or altered where
needed. An example of this is shown in Figure 10.

One issue we do not address completely is control
over how the views appear and disappear as the camera
changes. The current use of extreme views and a fade
curve are useful but not as precise as might be desired.
Example alternatives are fading in from the middle out or
fading in equally everywhere. One alternative function
we have examined is the blend function, which fades all
of the visible dependent views in and out as a unit.

A Blend function

The blend function lets the user control how much of the
independent versus the dependent is visible. This func-
tion is defined over all camera positionsp and orienta-
tions v and returns a number from0 to 1 (B(p, v) →
[0, 1]). The final color of the texture map isB(p, v) ∗
Cindep + (1−B(p, v)) ∗Cdep. The user specifies one or
more blend camera positions(p, v)i and specifies a per-
centage valuebi ∈ [0, 1] for that point. The system picks
a direction clip valuecv and a distance clipping valuecp

(currently the average minimum dot product and distance
for all blend points). The function is then (all vectors are
normalized):

si = max(0,
< v, vi > −cv

1− cv
) max(0, 1− ||pi − p||

cp
)

B(p, v) =
∑

i bisi∑
i si

If
∑

i si is zero thanB(p, v) returns0.

B Mapping to the plane

We map a direction vector to the plane by first writing a
matrix transformM which takes the frame at the surface
point to the Euclidean axes with the normal pointing in

Figure 7: Reconstructing the value at a point on the sur-
face. Resulting point is a linear sum of the four functions
overlapping at any given point.

they direction and thes derivative pointing in thex di-
rection. The direction vector is mapped to the normalized
coordinate system usingM . The projection to the plane
is then:

(s, t) = (x, z) ∗ (−1/(y + 1))

The upper hemisphere maps to a circle of radius of 1.
Figure 3 shows the effect of this projection on a set of
uniformly distributed points (constructed by sub-dividing
an icosahedron) and a set of circles on the sphere formed
by evenly incrementing the latitude (φi = i ∗ δ).

C References

[1] Ian Buck, Adam Finkelstein, Charles Jacobs, Alli-
son Klein, David H. Salesin, Joshua Seims, Richard
Szeliski, Kentaro Toyama, Emil Praun, and Hugues
Hoppe. Lapped textures.Proceedings of SIG-
GRAPH 2000, pages 465–470, July 2000.

[2] Paul E. Debevec, Camillo J. Taylor, and Jitendra
Malik. Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based
approach. Proceedings of SIGGRAPH 96, pages
11–20, August 1996.

[3] Paul E. Debevec, Yizhou Yu, and George D. Bor-
shukov. Efficient view-dependent image-based ren-
dering with projective texture-mapping.Eurograph-
ics Rendering Workshop 1998, pages 105–116, June
1998.

[4] Steven J. Gortler. Unpublished work. We appreciate
Gortler’s having told us about this work.

[5] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumigraph.
Proceedings of SIGGRAPH 96, pages 43–54, Au-
gust 1996.

[6] Cindy M. Grimm and John F. Hughes. Modeling
surfaces of arbitrary topology using manifolds.Pro-
ceedings of SIGGRAPH 95, pages 359–368, August
1995.

[7] Pat Hanrahan and Paul E. Haeberli. Direct wysi-
wyg painting and texturing on 3d shapes.Com-

puter Graphics (Proceedings of SIGGRAPH 90),
24(4):215–223, August 1990.

[8] Allison W. Klein, Wilmot W. Li, Michael M. Kazh-
dan, Wagner T. Correa, Adam Finkelstein, and
Thomas A. Funkhouser. Non-photorealistic virtual
environments. Proceedings of SIGGRAPH 2000,
pages 527–534, July 2000.

[9] Michael A. Kowalski, Lee Markosian, J. D.
Northrup, Lubomir Bourdev, Ronen Barzel, Lor-
ing S. Holden, and John Hughes. Art-based ren-
dering of fur, grass, and trees.Proceedings of SIG-
GRAPH 99, pages 433–438, August 1999.

[10] Fabrice Neyret and Marie-Paule Cani. Pattern-
based texturing revisited. Proceedings of SIG-
GRAPH 99, pages 235–242, August 1999.

[11] Manuel Oliveira, Gary Bishop, and David McAllis-
ter. Relief texture mapping.Computer Graphics
(Proceedings of SIGGRAPH 2000), 34(4):359–368,
July 2000.

[12] Ken Perlin and Luiz Velho. Live paint: Painting
with procedural multiscale textures.Proceedings of
SIGGRAPH 95, pages 153–160, August 1995.

[13] Kari Pulli, Michael Cohen, Tom Duchamp, Hugues
Hoppe, Linda Shapiro, and Werner Stuetzle. View-
based rendering: Visualizing real objects from
scanned range and color data.Eurographics Ren-
dering Workshop 1997, pages 23–34, June 1997.

[14] Rodney J. Recker, David W. George, and Donald P.
Greenberg. Acceleration techniques for progressive
refinement radiosity.1990 Symposium on Interac-
tive 3D Graphics, 24(2):59–66, March 1990.

[15] Georges Winkenbach and David H. Salesin.
Computer-generated pen-and-ink illustration.Pro-
ceedings of SIGGRAPH 94, pages 91–100, July
1994.

[16] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger,
Brian Curless, Tom Duchamp, David H. Salesin,
and Werner Stuetzle. Surface light fields for 3d pho-
tography. Proceedings of SIGGRAPH 2000, pages
287–296, July 2000.

Figure 8: A fish with scales that come and go. Frames are from a video sequence.

Figure 9: A real teddy bear (courtesy of S. Gortler at Harvard Univ.)

Figure 10: A vase with a flower pattern. The side pattern only appears from the side. If the automatic filtering is used,
the pattern appears as shown on the bottom when the object is at a distance. On the top, the hand-painted depth effect
is shown.

	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: WUCSE-2002-9
	Notes:
	Title: Creating View-dependent Texture Maps
	Author: Authors: Cindy Grimm; Michael Kowalski
	Date: November 28, 2000
	Email:
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: 314-935-6160
	Footer1: Department of Computer Science And Engineering - Washington University in St. Louis

