
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
L. B. Kara and K. Singh (Editors)

Just DrawIt: a 3D sketching system

Cindy Grimm1 and Pushkar Joshi2 †

1Oregon State University (previously Washington University in St. Louis)
2Motorola Mobility

Artist: Bradley Kellog

h"p://kennewman.blogspot.com/2011/12/
checking-­‐a"endance.html	

h"p://www.carbodydesign.com/2011/01/
mercedes-­‐benz-­‐interior-­‐sculpture-­‐aesthe?cs-­‐
no-­‐2/	

h"p://www.lannthear?st.com/index.php?
page=sculpture	

Artist:
 LeAnne Kolpin Artist: Santiago Calatrava

Mercedes-Benz car design

Model

2D sketch 3D sketch 3D surfacing

RBF surface

Drawing Patches

Figure 1: A 2D sketch and 3D sketch created using JustDrawIt (in approximately four hours) inspired by a traditional
artist’s drawing of the horse model (shown on left). JustDrawIt was also used for 3D surfacing: snapping the curve
network together and specifying normals where needed in order to create surfaces (upper right) or patches (lower
right).

Abstract
We present “JustDrawIt”, a sketch-based system for creating 3D curves suitable for surfacing. The user
can sketch in a free-form manner from any view at any time, and the system infers how those sketch strokes
should be added to the drawing. Specifically, existing curves are projected to 2D and analyzed to see if the
stroke edits or extends an existing curve, or if the stroke should make a new curve. In the former case the
2D stroke is promoted to 3D using the position of the existing curve, and then joined to that curve. In the
latter case, we use additional spatial information (e.g. temporary 3D surfaces) to create a new curve in
3D. All non-sketching interactions are based on unintrusive context-aware, in-screen pie menus designed
for rapid pen-based input. We also provide novel rendering styles and aides for interpreting and working
with 3D sketches. Finally, we support snapping together curve networks and specifying normals in order
to create surface models.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

We present “JustDrawIt" — a sketch-based curve edit-
ing system for creating 3D curve-network models on
the computer. The system’s primary design goal is to
mimic the experience of drawing on paper as closely
as possible. Towards that goal, we support a free-form
and natural 2D sketching user experience developed by
a study on how artists draw [Gri11b, Gri11a]. We aug-
ment the natural user experience with an in-screen, con-
textual pen-based, menu system for issuing editing and
non-drawing commands. This menu system scales better

† Research conducted at, and funded by, Adobe Systems Inc.

than gestures for multiple tasks and tablet input. We pro-
vide several visualization aides (shadows, depth-based
shading, 3D geometry) to better place the curve network
in 3D. Finally, we provide several options for specifying
depth values along non-planar curves.

JustDrawIt is built as a judicious combination of exist-
ing and novel sketch-based drawing techniques. A draw-
ing in JustDrawIt is represented as a collection of 3D
curves, any of which can be edited at any time, and
from any view. The core drawing system analyzes in-
put 2D strokes and uses them to edit existing curves or
to create new curves. JustDrawIt supports advanced 3D
curve editing by offering 3D sketching surfaces (draw-
ing planes, extrusion and inflation surfaces), direct ma-
nipulation (dragging) portions of curves in 3D, 3D trans-

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Back and forth scratch

Multi-stroke

Pre-closing Closing stroke
Pre-join curves Join stroke

Click on curve:
 Brings up menu

Mouse down on D: Select
Dragging: Selects region

Mouse down: location
of curve to drag

Dragging:
Edits curve

Draw Join, other Result

“Skip” strokes Multi-stroke oversketch

Figure 2: Examples of strokes joined into curves. Back and forth scratches (upper left) are first turned into smooth
strokes before joining.

formations, and editing curves by oversketching them
from other views. JustDrawIt can create 3D curve net-
works that define a consistent, unambiguous surface by
“snapping together” curves and defining local surface
normals.

From an implementation point of view, JustDrawIt
can be viewed as three different systems, each with in-
creasing levels of functionality. First, we have a com-
plete, stand-alone 2D sketching system. To this, we can
add advanced 3D curve editing functionality. Finally, we
can add technology for creating a consistent and unam-
biguous curve network suitable for surfacing.

JustDrawIt incorporates and extends many of the ex-
cellent sketching and tablet interface ideas that exist al-
ready [OSSJ09]. Integrating several of these techniques
into one system is challenging, more so because we want
to support interactive drawing and editing from any view
in a natural way. The style of 2D drawing we support was
inspired by a user study that analyzed artists drawing on
paper [Gri11b, Gri11a]. This study showed that a single
“curve” can be created in a variety of ways, from one
long stroke to multiple, disjoint strokes (see Figure 2).
Additionally, artists often switch back and forth between
drawing new curves and editing existing curves, may
edit curves in random order, and may edit the same curve
repeatedly at different times of the drawing process. Our
2D sketching system supports this free-form, “sketch-
anywhere-anytime" approach (Section 4). Specifically,
we incorporate multi-stroke sketching [BBS08, OS10],
both for creating curves and for oversketching existing
curves [BBS08]. We add to this the ability to scratch
back and forth [OSJ11] and to leave small gaps between
strokes (see “skip” strokes in Figure 2). There is no no-
tion of a selected curve — instead, the system is continu-
ally inferring which existing curve the user stroke should
modify (if any).

For 3D curve creation we support the traditional
drawing plane [BPCB08, BBS08] and extrusion sur-
face [BBS08] approaches, as well as introduce a new
paradigm we call an inflation surface (Section 5.1).
This approach was motivated by the interior “contour”
strokes we saw in our artist’s drawings (see Figure 11).
With two quick strokes the user specifies a 3D, non-
planar surface that they can then draw on. This is
similar in concept to inflation surfaces such as those
used by Teddy [IMT99], FiberMesh [NISA07] and Re-
poussé [JC08], except we do not require a closed, planar
contour to specify the surface.

We do not use epipolar constraints [KHR04, BBS08]
to specify depth values along non-planar curves. Instead,
we treat the problem as one of oversketching [CMZ∗99].
It is notoriously difficult for a user to envision what a
curve would look like from two different views, so in-
stead we always create a 3D curve. The user can then
change the view and oversketch or continue that curve
from the new view. We use a novel depth interpolation
and extrapolation technique to make the new stroke con-
sistent (in depth) with the existing curve (Section 4.4).

For 3D surface creation we provide visualization
and interface support for automatically and semi-
automatically snapping curves together and orienting
them. In particular, we use a novel ribbon rendering
method which makes visualizing and editing the curve
orientation (which direction is “out”) easier.

2. User’s view

We describe how the user interacts with the JustDrawIt
system at various drawing stages and for specific tasks.
We include complete instructions in the supplemental
materials as well as an accompanying video. In or-
der to support a wide variety of input device (tablet)
configurations, we assume only pen 2D positional in-
put (no keyboard modifiers, pen proximity, pressure, or
tilt/orientation information). While JustDrawIt can be
used with a mouse, we expect an optimal user experience
with a pen-like stylus. We have three drawing modes
which the user can toggle between at will: 2D stroke-
rendering, 3D tube-rendering, and 3D ribbon-rendering,
which map conceptually to 2D drawing, 3D curve draw-
ing, and 3D surfacing. All curves are always 3D. If a
draw plane is not visible or is visible but not under the
drawn stroke we use the view plane instead. The view
plane is perpendicular to the view direction and centered
at the centroid of the curve network (initially the origin).

Strokes: The user starts drawing by simply placing the
pen down on the drawing surface, dragging it, and lift-
ing the pen up. We call the mark created in this contin-
uous motion a stroke. If a stroke starts (or ends) near
an existing curve, that stroke will be added to the curve.
If the system picks the wrong option then the user can
over-ride that decision, and optionally indicate which
existing curve to add the stroke to (see Figure 3). The
system doesn’t have a notion of a “selected” (or un-
selected) curve since a stroke can be added to any curve
at any time. In order to ignore an existing curve, the user
instead changes the curve into a “ghost” curve. Ghost

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Back and forth scratch

Multi-stroke

Pre-closing Closing stroke
Pre-join curves Join stroke

Click on curve:
 Brings up menu

Mouse down on D: Select
Dragging: Selects region

Mouse down: location
of curve to drag

Dragging:
Edits curve

Draw Join, other Result

Figure 3: The user drew a stroke that the system as-
signed to the wrong curve. The user over-rides that
choice by tapping on the end of the stroke, which brings
up the stroke menu. The user can pen-down on the
“join” option and draw to the desired curve. Menu op-
tions, from top clock-wise: Combine two curves, Smooth
the join, Oversketch, New closed curve, Delete, Back-
and-forth scratch, Join, Join and close. Center option is
for New curve.

curves are faintly visible and have access to the curve
menu described below (just like any other curve), but are
meant to be ignored by the computation that determines
which curve to edit by the stroke.

The user can perform more traditional curve oper-
ations (dragging, scaling, rotating, smoothing, erasing
some or all) by clicking on a curve, which brings up
the curve menu (see Figure 4). Additional information
(e.g. how much of the curve) is indicated by select-
ing the relevant option and then “scrubbing” (repeatedly
moving back and forth) over the curve. Camera motions
(pan, zoom, center) are similarly invoked by clicking on
the background, away from any curve, to bring up the
camera menu. In our experience, such heads-up-display
menus are less intrusive than a standard menu bar, less
ambiguous than gestures , and do not interfere with the
creative drawing process [KB94, RJ02, MZL09].

3D curves: Once the user has drawn a few curves they
can begin to change the depth (in 3D) of points along
those curves, and to sketch curves that are not in the
initial drawing plane. Perhaps the simplest (but non-
sketching) method for moving the curves out of the
drawing plane is 3D dragging: the user can drag all (or
part) of a curve in the view direction. For example, to
bring the back leg of the horse forward, the user selected
the leg curve up to the hip, then grabbed the hoof and
pulled it forward using a drag with a smooth fall-off,
creating a smooth depth change from the hoof to the hip.
The shadow box [GH98] (Figure 5) provides both 3D
manipulation tools (camera and transforms) and helps
with visualizing the location of the curves in 3D via
shadows. Rendering the curves as 3D tubes further helps
with disambiguating depth.

Dragging is useful for large-scale 3D changes, but is
not very useful for precisely shaping sections of curves.
A more useful approach is to simply oversketch the
curve from a different view direction (Figure 6). In this
case, the user rotates the camera to the new view di-
rection, oversketches, then rotates back and continues
oversketching if desired.

Once a few curves are in place the user can define
drawing planes and extrusion surfaces based on the cur-
rent curves (see Figure 10). For example, to pick a draw-
ing plane the user clicks on the curve, clicks on the “A”

Shadow of selected curve

Camera controls

Detail curve

Complex patch

Suggested curve

Drawing curves on surface

1 2

Specifying surface

Specifying plane
Rotating plane,
drawing contour Result

Infer curve
Is on plane

Infer curves are on
inflation surface

Infer depth from crossings

3D drag

3D rotate

Figure 5: The shadow box provides 3D visualization
cues (shadows), camera controls, and 3D affine trans-
formations (right). The 3D versions are identical to the
2D, except they are constrained to the view and right di-
rections (floor) and view and up (right wall).

option, then clicks on one of the three arrows to pick
the plane direction. Extrusion surfaces are created in a
similar manner. To simplify creating cross-section con-
tours, the user can draw a line to a second curve instead
of picking a plane direction. This creates a plane that
is as orthogonal as possible to both curves, and passes
through the selection points.

Once the rough silhouette of the shape is drawn,
the user can also make a temporary non-planar surface
on which to draw interior curves. They draw the left
and right boundaries of the surface simply by sketching
over the existing curves. They can then draw non-planar
curves on the resulting sweep surface between the left
and right boundaries (see Figure 11).

As the user builds up the curve network they can
“snap” the curve network together by using the Pin op-
tion on the curve menu. They drag from the Pin menu
option to the desired snap point on the opposite curve;
the system automatically finds the closest pair of points.
This also creates a normal at the pin point, which the user
can grab and manipulate (see Figure 12). The user can
place additional normal constraints to control the orien-
tation of the curves, as visualized in the ribbon rendering
mode.

To create a surface the user makes sure all of the
curves are snapped together and the normals oriented.
The system shows which curves are close, but not
snapped — the user can fix these by clicking on them.
Generating a surface takes a few seconds to a minute de-
pending on the desired resolution and curve complexity.

3. Previous work

Olsen et. al [OSSJ09] provides an excellent survey that
covers the 3D sketching and gesture-based modeling
field. As stated in the introduction, we share the goals
of many existing systems. We discuss here differences
with specific systems. We will not touch on the extensive
work on recovering models from drawings; our system is
designed to be interactive, with the users explicitly cre-
ating curves in 3D, rather than a system for inferring 3D
from a static drawing.

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Back and forth scratch

Multi-stroke

Pre-closing Closing stroke
Pre-join curves Join stroke

Click on curve:
 Brings up menu

Mouse down on D: Select
Dragging: Selects region

Mouse down: location
of curve to drag

Dragging:
Edits curve

Draw Join, other Result

“Skip” strokes Multi-stroke oversketch

Figure 4: Dragging a part of a curve. The user selects the curve (one click) then selects the drag option and the
region of the drag on the curve (pen-down in option, drag over curve region). They can then grab and drag the curve
in the direction of the view plane, or along the view plane normal (clicking on top or bottom of drag arrow). Right:
Translating, scaling, and rotating the curve are also invoked from the menu, with the specific operation determined by
where the cursor is with respect to the drag icon (circle) and curve (above or below).

ILoveSketch [BBS08] is probably the most similar
in spirit to our system. Like ILoveSketch, we focus on
creating 3D curves as an end-goal in and of itself. We
incorporate many of the interface elements of ILoveS-
ketch (camera control, extrusion planes, curve-based se-
lection of planes). We differ in four areas. First, our 2D
sketching is designed to be more free-form and paint-
system like. Strokes can be applied to any curve, not
just the currently active one, from any view. We support
over-stroking, merging with strokes, and scratch-style
input, not just building a curve from multi-strokes. Also,
we retain the user’s original strokes, instead of fitting
curves to them. Second, we use over-stroking from arbi-
trary views, rather than explicit epipolar one or two-view
sketching, to create 3D curves. Third, we provide render-
ing cues and shaders to help disambiguate the 3D curve
drawings. Fourth, we have explicit support for turning
curves into a consistent curve network — this was not a
goal of ILoveSketch.

We are not the first to merge strokes into curves. One
approach is to treat the strokes as an image and perform
image processing techniques on the finished drawing to
extract and label curves [OS10]. A second is to treat mul-
tiple strokes as a curve fitting problem [OSJ11, BBS08].
We are most similar to the latter approach, except we
perform the analysis on the fly against all curves. We
also do not rely on curve fitting to “glue” our strokes to-
gether, but instead work directly with the input strokes.

There are several approaches for using drawings
from two different views to create a 3D, non-planar
curve [CMZ∗99, KHR04, BBS08]. We share the same
basic idea as these approaches, but treat this as an edit-
ing problem, not a construction one (see Section 4.4).

Probably the most successful 3D sketching paradigm
to-date is the inflation surface one, originally introduced
by Williams for shading 2D images [Wil91] and used
in Teddy [IMT99] to explicitly create a 3D surface. In-
flation has been extended in a variety of ways and with
different technologies [JC08, NISA07, OS10, SWSJ05].
Our surface construction is more general (not restricted
to inflating a single, planar curve), with the trade-off that
it is not as simple to use.

Similar to inflation surfaces, it is possible to sketch sil-
houette and cross-section contours and construct a sur-
face from those [CSSJ05,RDI10,AS11]. A more general
version of this allows the user to explicitly build up a

“scaffold” of orthogonal planes for sketching curves on
(no surface is built) [SKSK09]. The user can mimic this
type of construction in our system, albeit not from a sin-
gle view or as quickly, by drawing the silhouette curve,
then explicitly placing planes for the contours.

We use the Hermite RBF formulation [BMS∗10] to
create surfaces from the curve network. We provide a
more extensive and complete curve editing system, and
a mix of interactive and automatic approaches (as op-
posed to purely automatic) for establishing the normal
orientations.

4. Sketching (stroke inference engine)

In this section we describe how we process strokes into
curves. Strokes are 2D curves, made by a single pen
down, draw, pen up action. Curves are 3D entities with
a defined normal direction, and are built up out of one
or more processed strokes. The goal is to mimic, as best
as possible, the freedom of pencil and paper while still
supporting the creation of well-behaved curves from the
user’s individual strokes. When the user draws a stroke,
it is analyzed to determine if it should create a new
curve, be added to an existing curve (extending or overs-
ketching), or join together two existing curves. We break
this analysis up into the following steps: (pre-process)
If the user scratches back and forth, first convert this
to a smooth stroke (Section 4.1). 1) For each curve,
determine if it makes sense to apply the stroke to the
curve, and if so, how (merge, oversketch, close) (Sec-
tion 4.2). 2) From all candidate curves, pick the best op-
tion, including creating a new curve, or combining two
curves together with the stroke (Section 4.3). 3) Apply
the stroke to the 3D curve by first promoting the stroke
to 3D, then merging the result (Section 4.4). See Figure 7
for a flowchart of the steps.

Note that the analysis is primarily in 2D. From the
user’s point of view they are sketching on a 3D draw-
ing projected onto the view plane. All decisions about
joining the stroke to the curves are made with respect
to the projected curves. We mainly use 3D coordinates
of the existing curves to avoid adding strokes to curves
that are largely parallel to the current view direction. The
other place we use the 3D coordinates is for merging the
stroke into an existing curve; in this case, the 3D coordi-
nates for the stroke are gleaned from the 3D curve. Only

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Back and forth scratch

Multi-stroke

Pre-closing Closing stroke
Pre-join curves Join stroke

Click on curve:
 Brings up menu

Mouse down on D: Select
Dragging: Selects region

Mouse down: location
of curve to drag

Dragging:
Edits curve

Draw Join, other Result

“Skip” strokes Multi-stroke oversketch

Curves in plane
Drag Z Rotate back Oversketch Rotate camera 90 Oversketch

Rotate camera 90

Figure 6: Using a drag plus oversketching from different views to create a 3D, non-planar curve for the side of the fish.

Determine	
 how	

stroke	
 meets	

curve	

Selec3ng	
 curve	

to	
 edit	
 via	

stroke	

Applying	
 the	

stroke	
 to	
 the	

curve	

End	

Classifica3on	

Topology	

Analysis	

Type	
 of	

stroke	

Stroke	
 Drawing	

Figure 7: Steps for incorporating stroke into existing
drawing

after the stroke is promoted to 3D do we actually join it
to the curve.

Parameters: We provide the user with two intuitive con-
trols for specifying the behavior of the inference system.
The first is a 2D distance threshold d, defined in pixels
(see yellow circle in Figure 9). The second is a smooth-
ing parameter N which determines how much smoothing
is applied. All other parameters that follow are derived
from d and N by experimentation.

Representation: All of our curves, both 2D and 3D, are
stored as polylines (a list of points). We do not fit curves
to these points. We do apply a small amount of smooth-
ing (based on N) and re-sampling (to ensure at least 3
points per d interval). We assume our strokes and curves
are arc-length parameterized on the range [0,1].

4.1. Preprocessing for back and forth scratching
Before applying the stroke to the curve we first need to
see if the stroke itself needs to be processed because it
was made using a back and forth scratch motion. This
can be detected by seeing if the stroke folds back on
itself. Note that we only do this check if the user had
enabled it. If the stroke does fold back on itself, we con-
vert it to a non-folding stroke. Unlike [OSJ11], we do
not use curve fitting, but instead break the stroke into
pieces and then “glue” the pieces together to produce
a single, non-self-intersecting stroke. First, we use the
Short Straw [WEH08] algorithm to identify corners in
the stroke. We define a “fold-over” as a section of a
stroke that has corners at either end and is within a dis-
tance d of the another part of the stroke (or falls off the
end). This distinguishes a fold-over from a corner in the
curve (see Figure 8). To find fold-overs we break the
stroke into pieces at the corners. We then check each
section to see if lies on top of the previous section; if
not, i.e., it was a corner and not a fold-over, we join that
section back up to the previous one. Note that a section
is allowed to extend past the previous section.

Once we have broken up the stroke into its fold-over
sections, we need to construct a single, non-folded stroke
from the pieces. It is tempting to simply apply some sort
of weighted averaging to the points, but this tends to re-
sult in a “scalloped” look (Figure 8, middle top) because

the section ends often stick out, having more samples or
weight. Also, averaging everywhere loses the character-
istic features of the original stroke and flattens it out. In-
stead, we extend each section at either end, then morph
the sections towards each other using a projection opera-
tor, moving the ends more than the middles. The projec-
tion operator projects the point to the sections, then av-
erages bases on projection distance (ignoring points that
project past the ends of the section). Once the sections
are in agreement, we can sort the points topologically
and downsample to reduce the number of points. Imple-
mentation details can be found in the technical report
excerpt in the supplemental materials.

4.2. Determining how the stroke meets the curve

The goal of this section is to determine if it makes sense
to apply a stroke to a curve, and if so, how. We break
the decision-making into three steps: End-classification,
Topology, and Type (see Figures 7 and 9). The output of
this analysis is the type. In the end-classification step we
determine if one, or both, of the end-points of the stroke
meet the curve smoothly. In the second stage we rule out
cases where both ends of the stroke meet the curve with-
out respecting topological requirements. In the final step
we determine what type the stroke is, based on the end-
classifications, whether it meets the curve once or twice,
where (ends or middle) and whether or not it overhangs
the end of the curve. Recall that we are working with 3D
curves projection onto the view plane, and a 2D stroke
in the same plane, so all equations are in 2D.

End-classification: We support two types of stroke-
curve meetings. The first is a merge: The end of the
stroke starts near the curve, then travels along it for some
distance without back-tracking. The second is a join:
The end of the stroke does not overlap the curve, but
the stroke and the curve ends can be joined with a short
“nice” arc (see Figure 9). We remind the reader that for
all of the following, d is a screen-based selection dis-
tance specified by the user (yellow circle in the figure).

The merge test: Define the end of the stroke se as 1/3 the
length of the stroke, or 3d along the stroke, whichever
is smaller. Let ss ⊂ se be the largest contiguous region
that is 1) within distance 1.5d of the curve, 2) does not
fold back on the curve, 3) does not project off of the end
of the curve, 4) whose angle with the closest point on
the curve is less than 3/4π. Let sc be the corresponding
part of the curve the stroke projects to, da be the average
distance, and αa be the average angle. Then it is not a
merge if any of the following are true:

||ss||< (1/4)d and da < 0.1d

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Back and forth scratch

Multi-stroke

Pre-closing Closing stroke
Pre-join curves Join stroke

Click on curve:
 Brings up menu

Mouse down on D: Select
Dragging: Selects region

Mouse down: location
of curve to drag

Dragging:
Edits curve

Draw Join, other Result

“Skip” strokes Multi-stroke oversketch

Curves in plane
Drag Z Rotate back Oversketch Rotate camera 90 Oversketch

Rotate camera 90

Sections
Extending

Our result
Averaging

Corners Extend+blend Multi blend section

Figure 8: From left to right: Dividing the stroke into sections then extending each section using the projection operator.
Simple averaging leaves “scallops” and does not allow for intentional corners. Strokes made from blends can be
combined with other strokes. Strokes that overlap substantially are also treated as blends.

Join

Merge
Topology

d

v
vs

vc

Ends, overhang Type

M-M, no

M/J, yes

M, no

M/J-M/J, yes

 Figure 9: Left: Variables for defining a merge and a join. Middle: Examples of good and bad merges, joins, and
topology. The purple mark is the curve, the blue marks are the incoming strokes. The orange box shows examples of
an invalid a join or merge; the green box shows valid ones. Right: Determining type based on end conditions and
overhangs (top to bottom: oversketch, extend, partial oversketch, extend and close).

||ss||< (3/4)d and da < 0.2d

da > 1.1d or αa > 3/4π

||ss||= 0|||ss||< ||sc||/2 (1)

The first three tests rule out strokes that meet at right
angles or are too far away, the last test makes sure the
stroke is not projecting to different parts of the curve.

The join test: Since strokes and curves can have small
“hooks” at the end we actually search for the best join
between the end of the stroke and the end of the curve
(up to 2d in from the end). Given a point ps on the end
of the stroke and pc on the end of the curve, we de-
fine a good join as follows. Let d j = ||ps − pc||, v =
(pc− ps)/d j, and vs,c be the unit tangent at ps and pc
respectively. Using αs,c = v · vs,c define two terms: αd is
the how well-balanced the two angles are and αt mea-
sures the total angle. All of the following must be true
for a valid join:

αd = (|αc− (αc +αs)|+ |αs− (αc +αs)|)/2 < 0.2

αt = (αc +αs) < 0.3

0 < d j < 8d(2)

From all of the valid joins we pick the one with the best
score 0.2αd + 0.8αt . Additionally, any join with αc <
π/2 out-scores one with αc > π/2.

Topology: It is possible for both ends of the stroke to
meet the curve well from a geometric stand-point, but
still not be valid. Specifically, we check the tangents at
the ends of the stroke to see if they both point in the same
direction with respect to the curve.

Type: To analyze how the stroke meets the curve we
need one more piece of information — if the stroke
“overhangs” the end of the curve. An overhang hap-
pens when, while tracing along the stroke, we never back
track or fold-over with respect to the curve, and at some
point travel past the end of the curve. Overhangs happen
both with merges and strokes that close a curve.

We assume here that the stroke is oriented in the same

direction as the curve. The third and fourth types are spe-
cial cases of the first two:

• Oversketch: An over-sketch exists if both stroke ends
merge with the curve and the start of the stroke
merges with the curve before the end of the curve (no
overhangs). If the curve is already closed then the lat-
ter check is not needed.
• Extend: One end of the stroke either merges and over-

hangs or joins with the curve; the other end does not
merge or join.
• Partial over-sketch: One stroke end merges with the

curve but does not overhang the end of the curve.
• Extend and close: The second stroke end does merge

or join with the curve, but at the other end of the curve,
and there is an overhang for both ends.

4.3. Select curve to edit

In the previous section we applied the stroke to an indi-
vidual curve; in this section we determine, out of all of
the possibilities, which is the best. In addition to a stroke
applied to a single curve there are a couple of other pos-
sibilities we check: 1) The stroke forms a new closed
curve (check if each end of the stroke merges or joins
with the other end). 2) The stroke combines two curves
into one. 3) The stroke extends the previous stroke (if
the last action was a stroke). 4) The stroke overlaps the
previous stroke by at least 90%. We use 3) for creat-
ing oversketch strokes from multiple strokes. In cases
3 and 4 we blend (Section 4.1) or merge, respectively,
the strokes together before applying the resulting merged
stroke to the curve.

Essentially, we score each valid stroke-curve possibil-
ity (see below) and choose the one with the lowest score.
If there were no valid possibilities, or the best scoring
possibility is a closed new stroke, we create a new curve.
We add a few exceptions to this. If the stroke can be ap-
plied to the last edited curve (or stroke), we always do
so. Else, if a stroke combines two curves, we do so. We

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

also rule out any curves behind the drawing plane (if it
is visible). After that, we pick the possibility with the
lowest score. We do not use the score to rule out possi-
bilities, but we do use it to control how much smoothing
is done to the join.

To create the score for each match we use a combi-
nation of the end merge and join information (qm) and
the depth values of the projected curve (qd). In gen-
eral, we prefer matches with curves that do not extend
backwards along the view direction at the join point.
The score for a merge is qm = 0.7da/d +0.3αa/(3/4π)
(see Eqn 1). The score for a join is based on how far
apart the ends are. If they are very close or very far
apart the score goes up. Specifically (see Eqn 2): Let
qa = (αd/0.2)/4+ 3(αa/0.3)/4 and ql = d j/8d. Then
we have two scores for qm, depending on how big ql is:

ql > 3/4 use qm = (1+(ql−3/4)/(1/4))qa

ql < 1/4 use qm = (1+ql/(1/4))qa

1/4≤ ql ≤ 3/4 use qa (3)

The depth score qd is based on how far back the curve
is relative to the depth of all curves (the further back,
the worse the score). For merges and joins we also add
in a term that increases as the depth change in the join
region increases. Let Zm and ZM be the minimum and
maximum depth values of the entire 3D curve network,
and zm and zM be the corresponding depth values for the
curve. Then

qd =
1
4
(zm + zM)/2−Zm

ZM−Zm
+

3
4

zM− zm

ZM−Zm
(4)

We use just the first term for scoring over-sketches. If
this is a join, not a merge, we double qd . The final score
for a match is q = 1/4qd +3/4qm (averaging the merge
or join scores if there are two).

4.4. Applying the stroke to a curve

Once we have determined whether and how the stroke
affects a curve, we need to actually apply it to the curve.
We add depth values to the stroke to create a 3D stroke
that we then insert into the curve. We have three require-
ments. The first is that the stroke blend smoothly into the
curve both in the view plane and in depth. The second
is that the 3D stroke, when projected back to the view
plane, looks the same as the 2D stroke. Third, where the
stroke edits the curve (as opposed to extending it), it only
edits it in the direction that lies in the view plane.

New curves are placed on the inflation or extrusion
surface (if there is one), the drawing plane (if visible and
not tilted perpendicular to the view), or the view plane,
in that order.

During the stroke processing we project the stroke end
onto the curve, finding for each stroke point in the stroke
end se a matching point on the curve. We use these over-
lap regions to assign depth values to the stroke, interpo-
lating or extrapolating to the remainder of the stroke.

4.4.1. Adding depth values to the stroke

We take the following steps: position a plane in the
scene (the draw plane if visible and not tilted, otherwise
the view plane). Assign a depth value to each point on
the 3D curve as follows. Cast a ray from the camera
through both the 3D point on the curve and the plane.
The (signed) depth value is the distance between those
two points. Now take a point on the 2D stroke. Find the
depth value of the corresponding point on the 3D curve.
Cast a ray from the camera through the 2D stroke point
and plane. Move the stroke point in the view direction
from the plane by the depth value of the intersection
point.

Exactly how depth values are added to the stroke de-
pends on the type of operation. Wherever the stroke
overlaps or projects onto the curve, we use the curve’s
depth values. Where the stroke falls off of the curve,
we either extrapolate the curve’s depth values (no draw
plane visible) or use zero, essentially placing the stroke
on the draw plane (after first moving the draw plane so
that it intersects the end of the curve).

To extrapolate the depth values, we use the average
depth change per unit step in the view plane. To estab-
lish the correspondence we either use the closest point
between the stroke and the projected curve, or, if the
stroke folds over with respect to the curve, we use the
arc-length parameterization of the curve. Once we get
the depth values, we filter them several times before re-
constructing the curve. (see technical report excerpt in
the supplemental materials for complete details)

4.4.2. Joining curves

Once the 2D stroke is promoted to 3D, it needs to be
merged or joined to the existing curve. The core idea
here is to search for a 3D Hermite curve that blends
smoothly with the original curve and the stroke. This is
done in 3D to make sure that the join is smooth in all
dimensions. The optimization function is 0.2αd +0.8αt
for a join, and 0.8αd + 0.2αt) for a merge (see Eqn 2).
The tangent lengths of the Hermite curve are set to 1.5 of
the length of the join, or 0.5 if the curve will “zig zag”,
ie, < v× vs,v× vc < 0 (see Figure 9).

The search region depends on the selection distance d
and how good the merge or join is, scaling from d to 4d
for a bad merge score. The starting point for the search
is the middle of the region where they overlap (merge)
or from the end-point of the curve (join).

We smooth the join region based on both the user-
specified smoothing value (N) and how good the join is
(see technical report excerpt in the supplemental materi-
als for complete details).

5. 3D sketching surfaces

We considered two methods for creating 3D curves by
2D strokes. The first is to project the 2D curve onto a 3D
surface (typically a plane, but any surface works). The
second is to sketch the curve from multiple directions

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Shadow of selected curve

Camera controls

Detail curve

Complex patch

Suggested curve

Drawing curves on surface

1 2

Specifying surface

Specifying plane
Rotating plane,
drawing contour Result

Infer contour

Infer inflation surface

Roadster model (ILoveSketch) with
normals specified at intersections Cat head, adjusting normal for ear

Planar contour Detail on
inflation
surface Plane

Plane or extrusion

Rotate normal

Intersections

Extrusion Planes

Stage 4

Stage 9
Stage 11

Stage 15 Stage 21

Stage 17

Stage 27

Pick direction

Extrusion Planes

Figure 10: Creating a cross-section curve by using the curve menu to define a plane (click on the first curve, pick option
A, then drag to a second curve. Then click on the middle plane handle to automatically rotate to look down the plane
normal. Draw the cross section. The user can also create a drawing plane or extrusion surface (right).

Shadow of selected curve

Camera controls

Detail curve

Complex patch

Suggested curve

Drawing curves on surface

1 2

Specifying surface

Specifying plane
Rotating plane,
drawing contour Result

Infer contour

Infer inflation surface

Figure 11: Creating an inflation surface and drawing on
it.

and merge the result into a 3D curve that ideally projects
to each of the drawings. In practice, this is nearly impos-
sible because people do not create consistent drawings.

Sketching on surfaces is usually fairly predictable, but
often limits the types and complexity of the curves. We
simplify sketching on surfaces by 1) providing a cou-
ple of methods for quickly creating and placing drawing
surfaces, 2) using over stroking to edit curves from addi-
tional view points (rather than explicitly creating curves
from different view points and trying to merge them),
and 3) supporting standard affine transformations (rota-
tion, scale, translation), both in-plane and out of plane.
The general work flow is to start with a handful of curves
in a single plane, use those curves to define surfaces to
make initial curves that are not in the original plane, and
then use overstroking to further edit them. The user can
also use transformations to pull curves out of the plane,
and then over sketch to get the actual shape they want.
Editing by over sketching or extending is described in
the previous section. Here we discuss creating drawing
surfaces.

5.1. Drawing surfaces

We discuss three methods of creating drawing surfaces:
Planes, extrusion surfaces, and inflation surfaces.

As described in previous papers, we use a drawing
plane which can be explicitly positioned in the scene (see
Figure 5). The plane can be positioned in three ways:
Direct editing (grab and move), snapped to a point and
orientation on a curve, or snapped to two points, with the
normal aligned (as best as possible) with the tangents of
the curve. This makes it simple to add cross sections to
two silhouette curves (see Figure 10). Extrusion surfaces
are similarly selected with one point and a direction.

The inflation surface is a simplified version of the
surface created by inflation-based methods [IMT99,

NISA07, JC08]. We implemented the inflation surface
to support contour lines typically drawn by artists (see
Figure 11) in the interior of a round object. The user
strokes where they want the left side to be, then the right
side, then the system creates a surface that joins those
two curves, bulging towards the viewer in the middle.
Note that our quick inflation surface approximation has
several advantages to the inflation-based methods cited
above. While we expect existing curves to be under part
of the left and right user strokes, they do not need to cor-
respond to specific curves in the scene. The strokes can
even pass over gaps between the existing curves (eg, the
spout) – the depth values will be interpolated in this re-
gion. The curves do not even need to be planar. These
lenient input requirements allow us to create inflation
surfaces at will for arbitrarily complex curves.

Inflation Surface Implementation: The system builds
a temporary 3D curve for each stroke (super-imposed on
the left- and right-side existing curves), then joins pairs
of points on the curves with a half-circle. The radius of
the half-circle is one-half the distance between the two
points, with starting tangents in the view direction. Arc-
length parameterization is used to determine which pairs
of points to use. The series of half-circles are stitched
together to form a ruled, triangular mesh surface. For
reasonable curves this results in a non self-intersecting
surface (although we do not enforce this condition).

The temporary curves are built using a variation of the
depth assignment in Section 4.4. For each stroke point,
we cast a ray into the scene and find the closest curve
point in depth (within distance 2d). If no intersection is
found the depth values are interpolated or extrapolated
from nearby depth values. The result is a 3D curve that
tracks the curves under the stroke.

6. Surfacing

We have experimented with two methods of surfacing a
model. The first requires a curve network with no “dan-
gling” curves [AJA11], the second is an implicit RBF
Hermite formulation [BMS∗10]. In both cases, curves
that cross near each other need to be snapped together,
and in the latter case, we also want to know the desired
surface normal at sampled points. We provide tools for
explicitly snapping curves together and for searching for
potential intersections, which can be fixed by clicking on
them. This also defines a normal at those points. We also

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Figure 12: Left: Purple dots indicate snapped intersec-
tions. The user can place a normal constraint on the
curve (ear) and rotate to change the local surface nor-
mal. Right: Green dots are snapped intersections with
normal constraints, green arrows without dots are ad-
ditional normal constraints. Far right: All of the point,
tangent (dark gray) and normal (arrow) constraints used
to generate the RBF surface.

provide tools for explicitly setting the normal at points
along the curve (see Figure 12).

6.1. Visuals and interface elements
We have created three distinct visual styles, one each
for stage: 2D drawing, 3D curve editing, and 3D curve
network snapping (surfacing). The 2D drawing style is
simply view-facing strokes with a texture. The 3D curve
editing style has both warm-cool shading (the curves are
rendered as tubes) and depth-based shading. The surfac-
ing stage uses ribbons — basically the top part of a very
wide tube passing through the curve and oriented with
the tangent plane. The rendering style here is yellow on
the front, purple on the back, with a small amount of
warm-cool shading.

7. Results and discussion

We have not performed a formal user study. However,
we have shown the system extensively to four experi-
enced artists (and allowed them to experiment with the
system as they wish). Informal feedback suggests that
the 2D drawing aspect is particularly compelling. One
user was able to make a simple 3D head-shape after a
few minutes; comments from this user (and others) on
the 3D portion of the system is that they wanted a hand-
ful of “quick-starts” (curve networks in default config-
urations) plus basic curve transformations (which were
not implemented at that time).

We are fairly confident that the 2D drawing aspect
of JustDrawIt is easy to use and intuitive for traditional

artists. We expect that the 3D aspect of JustDrawIt may
have a slightly steeper learning curve. The benefit of this
steeper leaning curve is that our 3D curve drawing sys-
tem allows complete control over the sketched curve in
order to make careful, detailed edits, which is crucial in
order to support workflows of discerning artists. How-
ever, we believe that as future work, we can make the 3D
drawing experience even simpler for the novice user by
incorporating some of the work on single-view sketching
and supplying some standard “quick-start” curve net-
works.

All the examples in this paper were made by one user
with a four-year degree in art, and the system was tuned
to optimize that user’s experience. As a next step, we
would like to conduct a user study to gather feedback
from a large number of users with a wide range of artis-
tic abilities. The system as a whole could then be fine-
tuned to optimize the experience for most users. Dur-
ing the course of the user study, we plan to track when
users reject or select a different option. We can then ap-
ply machine learning to this information to learn bet-
ter thresholds and parameters for example, for the end-
classification in Section 4.2).

References

[AJA11] ABBASINEJAD F., JOSHI P., AMENTA N.: Surface
patches from unorganized space curves. Comput. Graph. Fo-
rum 30, 5 (2011), 1379–1387. 8

[AS11] ANDRE A., SAITO S.: Single-view sketch based
modeling. In SBIM ’11 (2011), ACM, pp. 133–140. 4

[BBS08] BAE S.-H., BALAKRISHNAN R., SINGH K.:
Ilovesketch: as-natural-as-possible sketching system for cre-
ating 3d curve models. In UIST ’08 (2008), ACM, pp. 151–
160. 2, 4

[BMS∗10] BRAZIL E. V., MACEDO I., SOUSA M. C.,
DE FIGUEIREDO L. H., VELHO L.: Sketching variational
hermite-rbf implicits. In SBIM ’10 (2010), Eurographics As-
sociation, pp. 1–8. 4, 8

[BPCB08] BERNHARDT A., PIHUIT A., CANI M.-P.,
BARTHE L.: Matisse: Painting 2D regions for modeling
free-form shapes. In SBIM 2008, June, 2008 (June 2008),
Alvarado C., Cani M.-P., (Eds.), pp. 57–64. 2

[CMZ∗99] COHEN J. M., MARKOSIAN L., ZELEZNIK
R. C., HUGHES J. F., BARZEL R.: An interface for sketch-
ing 3d curves. In I3D ’99 (1999), I3D ’99, ACM, pp. 17–21.
2, 4

[CSSJ05] CHERLIN J. J., SAMAVATI F., SOUSA M. C.,
JORGE J. A.: Sketch-based modeling with few strokes. In
SCCG ’05 (2005), SCCG ’05, ACM, pp. 137–145. 4

[GH98] GRIMM C., HUGHES J.: Implicit generalized cylin-
ders using profile curves. In Implicit Surfaces (June 1998),
pp. 33–41. 3

[Gri11a] GRIMM C.: Results of an observational study on
sketching. Tech. Rep. WUCSE-2011-57, Washington Uni-
versity in St. Louis, June 2011. 1, 2

[Gri11b] GRIMM C.: Results of an observational study on
sketching (poster). In SBIM ’11 (2011). 1, 2

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: a sketching interface for 3d freeform design. In SIG-
GRAPH ’99 (1999), pp. 409–416. 2, 4, 8

[JC08] JOSHI P., CARR N. A.: Repoussé: Automatic infla-
tion of 2d artwork. In SBM (2008), pp. 49–55. 2, 4, 8

c© The Eurographics Association 2012.

C. Grimm & P. Joshi / JustDrawIt

Stage 4

Stage 9
Stage 11

Stage 15 Stage 21

Stage 17

Stage 27

Figure 13: Examples made with the system. Surfaces are made using the Hermite RBF formulation. The stage labels in
the bottom row refer to distinct phases of the creative process used by the artist.

[KB94] KURTENBACH G., BUXTON W.: User learning and
performance with marking menus. In SIGCHI ’94 (1994),
ACM, pp. 258–264. 3

[KHR04] KARPENKO O., HUGHES J. F., RASKAR R.:
Epipolar methods for multi-view sketching. In SBIM ’04
(2004), Jorge J. A. P., Galin E., Hughes J. F., (Eds.), Euro-
graphics Association, pp. 167–173. 2, 4

[MZL09] MARINKAS D., ZELEZNIK R. C., LAVIOLA JR.
J. J.: Shadow buttons: exposing wimp functionality while
preserving the inking surface in sketch-based interfaces. In
SBIM ’09 (2009), ACM, pp. 159–164. 3

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA
M.: Fibermesh: designing freeform surfaces with 3d curves.
In ACM SIGGRAPH 2007 papers (2007), SIGGRAPH ’07,
ACM. 2, 4, 8

[OS10] OLSEN L., SAMAVATI F. F.: Stroke extraction and
classification for mesh inflation. In SBIM ’10 (2010), Euro-
graphics Association, pp. 9–16. 2, 4

[OSJ11] OLSEN L., SAMAVATI F., JORGE J.: Naturasketch:
Modeling from images and natural sketches. IEEE Comput.
Graph. Appl. 31 (Nov. 2011), 24–34. 2, 4, 5

[OSSJ09] OLSEN L., SAMAVATI F. F., SOUSA M. C.,
JORGE J. A.: Sketch-based modeling: A survey. Computers
& Graphics 33, 1 (2009), 85 – 103. 2, 3

[RDI10] RIVERS A., DURAND F., IGARASHI T.: 3d mod-
eling with silhouettes. In ACM SIGGRAPH 2010 papers
(2010), pp. 109:1–109:8. 4

[RJ02] RUBIO J. M., JANECEK P.: Floating pie menus :
Enhancing the functionality of contextual tools. Learning
(2002), 39–40. 3

[SKSK09] SCHMIDT R., KHAN A., SINGH K., KURTEN-
BACH G.: Analytic drawing of 3d scaffolds. In ACM SIG-
GRAPH Asia 2009 papers (2009), pp. 149:1–149:10. 4

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M. C., JORGE
J. A.: Shapeshop: Sketch-based solid modeling with blob-
trees. In SBIM ’05 (2005), Jorge J. A. P., Igarashi T., (Eds.),
Eurographics Association, pp. 53–62. 4

[WEH08] WOLIN A., EOFF B., HAMMOND T.: Shortstraw:
A simple and effective corner finder for polylines. 2008,
p. 33Ð40. 5

[Wil91] WILLIAMS L.: Shading in two dimensions. In
Graphics Interface (1991). 4

c© The Eurographics Association 2012.

