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This dissertation presents a technique for comparing local shape properties for similar
three-dimensional objects represented by meshes. We develop a shape representation
that is sensitive to subtle shape differences but relatively insensitive to noise, and
use this representation to detect features of the objects. The features are used, along
with a measure for shape similarity, to compute a correspondence between the objects,
which then allows shape comparison based on the shape properties at corresponding
points. An advantage of this approach is that the final comparisons depend on the
similarity-based correspondence and not on a physical three-dimensional alignment.

Our novel shape representation, the curvature map, describes shape as a function
of surface curvature in the region around a point. A multi-pass approach is applied
to the curvature map to detect features at different scales. The feature detection
step does not require user input or parameter tuning. We use features ordered
by strength, the similarity of pairs of features, and pruning based on geometric
consistency to efficiently determine key corresponding locations on the objects. For
genus zero objects, the corresponding locations are used to generate a consistent
spherical parameterization that defines the point-to-point correspondence used for
the final shape comparison.
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Glossary

• Affine Transformation - A combination of rotation, translation, scale, and shear

transformations.

• Block Matching - Finding the position in one image that corresponds to another

image for a block of pixels (rather than single pixels).

• Correspondence - A 1-to-1 mapping between the points of one object and the

points of another object.

• Curvature - A property of a curve or surface that indicates deviation from

straight (curve) or flat (surface). Curvature can be different for each direction

at a point on a surface, but there are two uniquely defined curvatures, called the

principal curvatures, one being the maximum and the other being the minimum

of all curvatures at a point. Two other useful curvatures, the mean and Gaus-

sian curvatures, represent the average and product of the principal curvatures

respectively.

• Feature - A point or region on a surface that has some shape property that

makes it distinguishable from other locations on the surface.

• Geodesic - The shortest path between two points, where the path and the points

are constrained to lie on a given surface.

• Homeomorphism - A mapping between points on different objects that is con-

tinuous, one-to-one, and onto, and the inverse of which is also continuous.

• Manifold - A surface that is locally Euclidean.

• Mesh - A representation of a 3-D surface consisting of vertices, which represent

points on the surface of the object, and faces, which define the connectivity

between vertices.

xix



• Modality - A specific technique for generating data from a 3-D object, such as

computed tomography (CT), magnetic resonance imaging (MRI), etc.

• Multi-modal - Integrating information from two or more modalities applied to

the same subject.

• Parameterization - A homeomorphism from a surface to a canonical shape of

the same genus, or a continuous, 1-to-1 mapping from a piece of a surface to

the plane.

• Pose Estimation - Correlating data from an image which is a view of an object

with a model of the object to determine the orientation of the image viewpoint

relative to the object.

• Projective Transformation - Transformation from an n dimensional space to an

n− 1 dimensional space.

• Registration - Process of determining the transformation that orients one object

in space with respect to another object.

• Similarity - A comparison between two points that measures how much the

shape in the vicinity of the two points is alike.

• Template Matching - Classification of unknown samples by comparing to known

prototypes or templates (e.g., detection of n × n subimage within an N × N

search area that best matches n× n template f).

xx
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Chapter 1

Introduction

Modeling the shape of three-dimensional (3-D) objects is an important capability for

computer-based modeling and simulation, graphics, and computer vision. Shape is a

fundamental property of objects. Other properties, like texture and color, may often

vary considerably among objects of the same type. Complex shapes can be found in

naturally occurring structures, such as bones or organs within the human anatomy,

as well as man-made structures, such as automotive or aircraft designs. Examples of

organic and man-made shapes are shown in Figures 1.1 and 1.2 respectively. Shape

modeling applications include design and manufacturing, medical diagnostic imaging

and treatment, terrain mapping, and automated surveillance.

The ability to compare 3-D shapes is important for many applications. There is a con-

tinuing need for improved medical diagnosis, where for example, automated tracking

of tumor growth or bone deterioration could support early detection and treatment

planning. Comparison of data from healthy subjects would provide a statistical un-

derstanding of what a ‘normal’ shape is. The ability to provide a detailed assessment

of the deviation from the norm would support treatment decisions and reconstruc-

tion planning. Shape comparison techniques could also be used to search for similar

shaped objects in a database for classification based on known shapes. The role of

automated shape comparison will grow with the availability of 3D surface data, and

will be a major benefit to the domain knowledge expert.

Inter-patient variation and positioning issues make it difficult to accurately align

data from different patients, data from the same patient taken at different times,

or data captured using different modalities. Solutions to the 3-D object alignment
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Figure 1.1: Bone structure in a knee joint. From “Accurate Measurement of
Three-dimensional Natural Knee Kinematics Using Single-Plane Fluoroscopy” by

Rahman et al., 2003 Summer Bioengineering Conference.

Figure 1.2: Machined parts. From Stamping Press - Preferred Tool and Die, Inc.,
URL=http://www.preferredtool.com/oemmarkets.htm.
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problem have generally relied on manual input to identify corresponding features.

However, manual selection of corresponding features and subjective determination of

the difference between objects is a time-consuming process requiring a high level of

expertise. Automatic shape comparison techniques can be used to reduce the need

for manual labor by assisting in the automated alignment of 3-D models.

Comparing shapes and tracking shape changes requires identifying similarities and

quantifying the differences between objects based on their shapes. In order to extract

information from shape models, metrics are needed that can capture and quantify

properties of the object surface. Shape comparison can also incorporate or be used

in a number of related tasks:

• Object recognition is primarily concerned with finding properties that distinguish

objects, without the need to identify in what way, or to what extent, the objects

are different. The goal is to determine if a particular object is present, or to

search through a database to find the objects which match most closely to a

given query object. An emphasis is placed on efficiency, leading to approaches

which reduce the dimensionality of the comparison, and focus on the gross

shape.

• Computer vision compares two-dimensional (2-D) images of a scene to either a

3-D model or other 2-D image patterns to determine if a particular object is

present in the image, and if possible, identify its orientation.

• Feature detection finds points or higher level structures with distinguishing prop-

erties that can be used to establish correspondences between objects.

• Correspondence generation finds a mapping between points in different images

or models. Correspondence generation can also be applied to features, but not

all features of an object will necessarily have a corresponding feature in the

other object.

• Registration addresses the issue of relative orientation. Various methods have

been used to find the best alignment of objects. Often these have been applied to

register different views of the same object. The views also may have been made
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using different medical imaging modalities such as X-ray, computed tomogra-

phy (CT), magnetic resonance imaging (MRI), positron emission tomography

(PET), etc.

• Pose estimation is similar to registration. Typically, pose estimation compares

an image to a 3-D model or to an indexed set of views to determine the viewpoint

of the image relative to the object.

• Similarity measures quantify the similarity or dissimilarity between objects.

1.1 Detailed Shape Comparison Goal

The objective of this research is to develop a methodology that supports detailed

comparison of 3-D objects. This object comparison problem can be stated as follows:

Input data and conditions:

• Representations for two (or more) similar objects.

• The objects can be oriented arbitrarily.

• The mesh resolution of the representations can be different.

• Different portions of the surface of the object may be represented.

• Objects should have some corresponding features, but both objects may have

additional features not present in the other object.

Goals:

• Find the best alignment of the two objects.

• Find a mapping between corresponding features occurring in both objects.

• Quantify the difference between the corresponding features in the two objects.

• Identify features that show up in only one of the two objects.
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Ulna – Distal end Styloid Process

Head

Inferior (Distal)
Radioulnar
Joint

Inferior (Distal)
Radioulnar
Joint

Figure 1.3: Two similar bones that are candidates for detailed shape comparison.

• Classify the nature and magnitude of these features.

The initial application targeted by this research is comparison of bone surface shape.

An example of two similar bone shapes is shown in Figure 1.3. The bone surfaces

are represented by a mesh created from CT scan data of two different subjects. The

mesh consists of points sampled from the surface of the object, plus connectivity

information between points used to form triangular faces approximating the surface

shape. We assume no other information about the interior of the object, or about

other properties on the surface.

In our case, these meshes represent naturally occurring, organic, surfaces. Therefore,

it can be inferred that there are few sharply delineated features, such as might occur

in a machined part. Because the surfaces are generally smooth, local features are

less distinguishable from one another. The existence of extra features in one or both

objects, along with noise in the sampled data, can make it more difficult to compare

the shape of the objects.
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1.2 A New Curvature-Based Shape Matching Tech-

nique

To facilitate shape comparison, we develop a shape representation that is sensitive to

subtle shape differences but relatively insensitive to noise, and use this representation

to detect features of the objects. The features are used, along with a measure for

shape similarity, to compute a correspondence between the objects, which then allows

shape comparison based on the shape properties at corresponding points. An advan-

tage of this approach is that the final comparisons depend on the similarity-based

correspondence and not on a physical three-dimensional alignment.

Our novel shape representation, the curvature map, describes shape as a function

of surface curvature in the region around a point. Surface curvature is one of the

fundamental properties of the surface. The size of the curvature map region is only

restricted by practical limitations determined by the size and shape of the object.

Feature extraction is another key ingredient in the shape matching process. Features

may be global or local, and may represent fine or gross properties of the object. We

generate feature regions on the surface by applying the min-cut/max-flow graph cut

algorithm to a local shape property derived from the curvature map. To capture

features of different scales, a multi-pass approach is used, where the local shape

property represents differently sized subsets of the underlying curvature map. This

allows feature detection to proceed without requiring user input or parameter tuning.

We use features ordered by strength, the similarity of pairs of features, and pruning

based on geometric consistency to efficiently determine key corresponding locations on

the objects. For genus zero objects, the corresponding locations are used to generate a

consistent spherical parameterization that defines the point-to-point correspondence

used for the final shape comparison. Various shape difference measures are calculated

at corresponding points in order to evaluate the differences between the objects.
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1.3 Organization of the Dissertation

Chapter 2 describes related topics from the fields of shape modeling, object recogni-

tion, computer vision, image registration, etc. Chapter 3 presents a survey of existing

techniques for estimating curvature and provides a suite of test cases for assessing cur-

vature estimation techniques. The curvature map is developed as a new local shape

similarity measure in Chapter 4. In Chapter 5, a multi-scale framework for feature

detection is presented. This framework combines a local shape property based on the

curvature map with an efficient graph cut algorithm. Chapter 6 illustrates feature-

based object alignment, and shape similarity assessment of the aligned objects is

described in Chapter 7. Finally, in Chapter 8 summarizes this research and presents

areas for further study.
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Chapter 2

Background: Reasoning About

Object Shape

Analysis and comparison of three-dimensional (3-D) objects is important for applica-

tions such as medical imaging, comparative anatomy, computer vision, facial recog-

nition, and forensic identification. Recent developments in imaging technology have

provided extensive detailed data for internal organs as well as the exterior shape of

the human anatomy. The desire to use this data for diagnosis and guidance dur-

ing medical procedures has fueled the search for automated analysis techniques. In

computer vision, object recognition is needed to identify 3-D objects present in a

scene. Also, the expanding capability to store and access large databases has pro-

duced a need for automating comparison of objects for search and retrieval opera-

tions. For example, efficient access to the large number of existing machine parts,

distributed across manufacturers’ web sites, could streamline the design process for

the CAD/CAM (computer-aided design/computer-aided manufacturing) community.

Comparison and matching of 3-D objects based on shape relies on shape similarity

measures, feature detection, correspondence, and registration techniques.

Section 2.1 presents some general shape properties, while shape representations and

comparison techniques are presented in Sections 2.2 and 2.3 respectively.
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2.1 Shape

Shape is a fundamental property of objects, but is difficult to describe concisely in

the general case. This has fostered much research in ways to describe and compare

the shapes of objects. This is distinct from the way we represent or model the object.

We will distinguish between the object representation, which gives us a definition of

the object, and the shape representation, which tells us something about the shape

properties of the object. The shape representation will generally be created from the

object representation, but the two may be very different. While there are several

ways to represent an object, the shape of an object is considered to be independent

of the object’s representation.

Objects may be decomposed into basic components that may then be used for com-

paring components and reasoning about the object. Whether at the object or com-

ponent level, a way to measure the similarity of shapes is required. We now describe

some common approaches to represent and describe shape and their strengths and

limitations.

2.1.1 Object Representation

Information about an object comes from some sampling of that object. This can be

one or more images of the object, a scene containing the object, range data, or full

3-D models. Representations of 3-D models can employ a boundary representation

or a volume representation.

The volume of an object can be represented by dividing the space into volume el-

ements called voxels, and identifying all of the voxels contained within the object.

Generally, the voxels of most interest are those on the boundary of the object. An-

other volumetric representation of an object is a boundary representation solid. It is

defined by a set of construction surfaces that each carve away at the 3-D space, elim-

inating anything outside the surface. The object definition is then everything that is

left. Recovering the surface of the remaining volume is problematic, as the surface
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a) 3-D Surface Mesh b) Mesh flattened to the plane

Radius
(Distal end)

Figure 2.1: A mesh representation of the surface of a bone. (a) 3-D surface mesh.
(b) Surface mesh flattened to the plane. Note the distortion of the triangle areas in

the flattened mesh compared to the 3-D surface mesh.

may consist of many pieces that are defined implicitly as sections of the construction

surfaces. Finding the bounding edges of these pieces is a complex and tedious task.

Nielson [124] discusses several aspects of volume modeling, including different sources

and representations of volume data, and multi-resolution models based on wavelets.

Wavelets are a common approach to generating different levels of detail. Southern

et al. [161] attempt to apply wavelets to triangular meshes as a multi-resolution

analysis tool. While theoretically useful for refinement, compression, and generating

multi-resolution models, a general mesh seldom meets their connectivity requirements,

limiting the use of this approach in practice.

Bonneau and Gerussi [17] generate different levels of detail by removing vertices using

a greedy algorithm. Local neighborhoods around each point are used to reduce the

problem to a local one. As vertices are removed, the basis functions at adjacent

vertices are updated. Both 2-neighborhoods and 3-neighborhoods provide reasonable

approximations, even though they may not be optimal. This gets around the mesh

requirements to generate the wavelet representation, but still does not decompose the

data based on the identified features.
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Pang and Furman [131] discuss data quality issues in visualizing sparse data sets.

They look at various interpolation techniques, particularly Shepard’s methods and

Hardy’s multiquadric methods. It is possible to get a reasonably smooth fit through

the data with an appropriate selection of the free parameter, but the sparse data

assumption does not generally hold for the problems we are trying to solve.

Other representations define the surface of the object directly. One of the simplest

representations for 3-D shapes is a surface mesh. Meshes are composed of a set of

vertices and a set of faces that define the connectivity between the vertices. Mesh

vertices can come from surface coordinates generated by a scanning device, points

located on an analytical definition of the surface, or any number of other techniques.

The mesh faces are defined as polygons connecting mesh vertices. While the face

polygons can have an arbitrary number of sides, triangular faces are the simplest and

most common. A mesh representation for a bone is shown in Figure 2.1a.

Farin [49] deals with how to quantify shape using principles in computer-aided geomet-

ric design (CAGD). He describes the development of B-spline curves and surfaces, and

the use of curvature plots to highlight the detailed shape properties. Loncaric [104]

gives an overview of shape analysis techniques including evaluation criteria for shape

representation methods, and issues related to visual perception.

Operating on splines, planes, or analytic functions requires a detailed understanding of

the underlying representation. However, such surfaces can always be used to generate

a mesh. There is extensive literature on methods for constructing a mesh from a set

of scattered data points [103, 76, 3, 11], splines, and implicit surfaces [105], and these

methods will not be covered here.

A related topic is the representation of 3-D objects using 2-D range images. A range

image consists of an M×N array of pixels, with image intensity indicating depth. For

the subset of the image associated with a particular object, this depth can be used to

infer shape. In the remainder of this document, the focus is on the general 3-D mesh

representations. In general, meshes lack the regular array of pixels provided in range

data, however, we still consider methods developed for range data to see if they can

be extended to the more general mesh case.
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2.1.2 Shape Decomposition

It is often useful to decompose shape into its basic components. Decomposition

schemes range from hierarchical schemes that essentially form compact representa-

tions, to heuristic schemes that subdivide an object based on some local criteria.

There are also a number of general discussions of the aspects of shape.

Kim et al. [88] propose recursive shape decomposition based on convexity and the

morphological operators dilation, erosion, opening, and closing. The shape is broken

into body and branches. Over-segmentation is corrected by merging branches.

Mortara [121] decomposes an object based on topology changes of the intersection

of the object with spheres located at each vertex, as the radius of the spheres is

increased.

Shape decomposition methods for 3-D volumes have been developed based on their

topology [40], and morphological tools [110]. However, volume decomposition pro-

vides volumetric features rather than surface features, and also is only applicable to

closed objects.

Decomposition schemes can also generate a graph representing the structure of an

object. Graph representations and comparison techniques will be discussed later in

this chapter. We also look at two ways in which the surface of an object can be

decomposed; segmentation and feature detection. Segmentation separates the entire

surface into regions, while feature detection identifies regions that typically cover a

subset of the entire surface.

2.1.3 Shape Similarity

Similarity measures quantify the similarity or dissimilarity between objects by com-

puting distances between shape representations, such as sets of points, feature vectors,

histograms, signatures, or graph representations. A number of these shape represen-

tations have grown out of image analysis for range data [57, 72] or medical images [46].

Similarity measures can be global, applying to the entire object, or local, applying to
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a point or local subset of the object. They provide data to answer questions such as:

‘How much do two objects, A and B resemble each other?’, ‘Does B resemble A more

than some other object resembles A?’, or, ‘Does some part of A resemble some part

of B?’ There are other variations of the problem, for example, can we simplify an

object representation, but still match within some tolerance, or can we find a series

of shape transformations to morph from A to B.

Two approaches to measuring similarity are (1) directly computing a similarity value

for a pair of objects, or (2) compute a descriptor for each object and then take the

difference between their descriptors. If the descriptor is a single value, computing the

difference is straight forward. If the descriptor has more than one value, the difference

can be calculated using a distance measure such as the Minkowski distance,

Lp(x, y) = (Σk
i=0 | xi − yi |p)1/p

where x and y are two shape descriptors, and xi and yi represent the values of the

ith dimension for the N -dimensional shape descriptor. For p = 2, this is just the

standard Euclidean distance L2.

A significant area of research is retrieving objects from a database via a shape-based

search. The goal of efficient retrieval from large image or 3-D object databases dictates

the use of lower dimensional signatures for searching. A smaller signature translates

to more efficient comparison of the query object signature to the signatures of a large

number of candidates in the database. However, the signature must be discriminating

enough to correctly retrieve similar items while minimizing false positives. Complicat-

ing factors are missing and mis-oriented polygons, and overlapping or self-intersecting

surface sections common in existing models.

Two approaches for object recognition are to measure the similarity of a shape sig-

nature or a feature graph. Signatures provide a simpler representation of the object,

which is used to assess the similarity of objects. Feature graphs embed the topo-

logical relationships between features of the objects. The similarity of the graphs or

sub-graphs is used to establish correspondence or similarity.

The basic object recognition problem involves determining which objects appear in

a scene, and where they appear. The input to the problem is an image of the scene
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and knowledge of various objects and how they may appear. The knowledge of

objects may be derived from a 3-D model of the object, or may be embedded in

a collection of views of the object. Pope [138] surveys various model-based object

recognition methods along with the associated shape representation schemes that

underlie these methods. The general steps for object recognition include detecting

features, organizing features into stable groups, using those features to select a likely

model from a set of models, finding the best match between the image and model

features, and finally deciding if there is reasonable evidence that the object is present.

It concludes that most methods are dependent on specific classes of objects, however,

it does not address how features are detected. Most of these same steps show up

in our shape comparison approach, and so it is instructive to see how the object

recognition problem is being addressed.

Attempts have been made to define signatures for shape matching. Signatures may

be global or local, and provide a compact representation that results in more efficient

comparison at the expense of their ability to discriminate shape. Several methods em-

ploy histograms that represent the distribution of some property relative to a point on

the object surface. Global similarity measures are applicable to coarse shape match-

ing for shape retrieval, but generally provide limited discrimination between similar

shapes. Moreover, in general, methods based on distances between points, such as

Hausdorff distance, multi-resolution Reeb graphs [74], shape distributions [129] [130],

and spin images [84], are sensitive to the distribution of the points. There have been

a few attempts to create local signatures.

2.1.4 Medical Imaging

Medical imaging is just one of the applications for shape matching, but it has been

an important source of data. Medical imaging operates with data from a number

of different imaging techniques. Van den Elsen et al. [46] describe the challenges

of matching medical images from different modalities, such as SPECT (single pho-

ton emission computed tomography), PET, MRS (magnetic resonance spectroscopy),

MRI, ultrasound, X-ray, and CT, dealing with differences in patient position, and the

effect of image acquisition parameters. They define criteria for classifying registration
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methods according to dimensionality, whether the properties are extrinsic or intrinsic,

global or local, the elasticity of the transformation (rigid, affine, projective or curved),

whether it is interpolating or approximating, the way parameters are determined, and

how much interaction is required. Current methods are then classified according to

these criteria.

Much progress has been made in object matching, particularly in the medical field.

The use of non-rigid transformations, segmentation, surface curvature data, and graph

structures has already proved useful for a variety of medical imaging applications.

The steps used in matching medical images can be applied to other object matching

applications as well.

Of most relevance to shape matching are the fully automatic methods based on in-

trinsic properties. Most commonly, 3-D medical images come from a set of image

slices. The resolution within a slice is generally much finer than the resolution be-

tween slices. Some matching methods are applied to the full set of 3-D data, while

others are more suited to an individual 2-D slice. Alternatively, this data may be

used to generate a 3-D surface representation.

2.2 Shape Representations

This section highlights different ways to represent shape. Several of these are listed in

Tables 2.1 and 2.2. Recurring themes include graph-based methods, feature vectors,

multi-resolution schemes, and the use of invariants.

Several signatures have been defined for shape matching. Global signatures result in

more efficient comparison at the expense of their ability to discriminate fine shape

differences. Global signatures are generally used to recognize complete objects, while

matching objects with occlusion requires recognition based on a part of the object,

implying a local signature.
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2.2.1 Global Descriptors

Lin and Perry [101] present methods to calculate shape descriptors such as the genus,

area, and Gaussian curvature. This information is useful; however, it is not detailed

enough for detailed shape matching of similar objects. For example, in addition to

overall area, we also would like area broken down according to regions associated with

specific features.

Kumar et al. [94] extract the principal components of an image to use as the optimal

filter. For matching, they look at the correlation of the peak values and signal-to-noise

ratios.

Shams et al [153] generates feature vectors from an image using the response to

Gabor wavelets. They present an extension to the typical graph matching similarity

measure by including similarity of topologically adjacent nodes in addition to the

usual similarity of corresponding nodes.

Ohbuchi et al. [127] define a complex feature vector as a concatenation of nine simpler

feature vectors. The nine feature vectors are formed by computing three statistics, (1)

moment of inertia, (2) average distance of surface from the axis, and (3) variance of

distance of the surface from the axis, for each of the three principal axes of inertia of

the model. Each of these vectors consists of values defined parametrically at discrete

locations along the associated axis. Their results showed this method to work best

for models with some form of rotational symmetry, but the key concept is the ability

to combine multiple properties into a complex feature vector.

Corney et al. [34] examine four coarse shape metrics for filtering a search for similar

shapes. One is based on properties of the bounding box aligned with the principal

axes of the object, and the other three are ratios between properties of the object

or its convex hull. The measures relating object volume to convex hull volume and

convex hull area cubed to convex hull volume squared were the most discriminating

without eliminating many good match candidates.

Zhang and Chen [187] present efficient algorithms to calculate features directly from a

mesh representation, whenever the feature can be written as a signed sum of features
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of an elementary shape. The features they use are area (for 2-D object recognition)

or volume (for 3-D object recognition), moments, and the Fourier transform.

Subrahmonia et al. [166] describe a recognition technique for 2-D and 3-D objects

using invariants of higher degree implicit polynomial functions. This method requires

that the data set be segmented so that each segment corresponds with one object

in the database. Then an implicit polynomial is fit to the data and invariants are

computed for the polynomial coefficients. A probability of error based on a weighted

distance measure is used to compare these invariants with those of the objects in the

database.

Olver et al. [128] consider two affine invariant edge detection schemes. One is based on

weighted differences of images at different resolution within an affine invariant scale-

space. The other method involves developing an affine invariant gradient function.

These edge detectors are then extended to define affine invariant active contours and

affine smoothing functions. They apply these methods to 2-D images, but state that

extension to 3-D can be accomplished using a corresponding volume functional.

Zhang and Fiume [188] perform shape matching based on normalized Fourier de-

scriptors. They use the L2 distance between normalized weighted Fourier descriptor

coefficients to determine similarity. The Fourier descriptors come from decomposition

using the eigenvectors of a mid-point smoothing operator.

Starting with a voxel representation, Kazhdan and Funkhouser [86] split the model

into M concentric spheres, centered at the center of mass. Each sphere is then

decomposed into N harmonic components, producing an M ×N signature. Since the

harmonic components do not depend on the orientation of the concentric sphere, the

resulting signature is invariant to rotation. They apply this method to shape retrieval

from large model databases.

Similarly, Novotni and Klein [126] develop 3-D Zernike functions in terms of harmonic

polynomials. Vectors that are invariant to rotation are derived by applying Zernike

functions to a voxel representation of the object. The distance between these vectors

is used for matching in the shape retrieval process.
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Figure 2.2: Shape distributions for four object classes. Adapted from “Shape
Distributions”, Osada et al., ACM Transactions on Graphics, 21(4), 2002.

Tenenbaum [174] presents an isometric feature mapping procedure that maps a set of

images to points in a low-dimensional Euclidean feature space. This low-dimensional

Euclidean embedding captures the intrinsic similarities of the images. The crux of the

method is computing a geodesic distance between observations. These distances are

used to compute a global geometry-preserving map using multi-dimensional scaling.

Mokhtarian, Yuen, and Khalili [118, 185] propose a multi-resolution scheme utilizing

surface curvature. Different levels of the multi-scale description are generated by

parameterizing the surface locally by semi-geodesic or geodesic polar coordinates and

then smoothing with a 2-D Gaussian convolution. Curvatures are calculated at each

level by estimating derivatives with respect to the geodesic coordinates by convolution

with the partial derivatives of the Gaussian function, and then computing mean and

Gaussian curvature from these derivatives.

Osada et al. [129, 130] develop shape distributions, a signature based on the proba-

bility distribution of a selected metric. This signature is represented as a geometric

histogram. For one particular metric, which they call D2, they create a distribution

from the distances between randomly selected pairs of points. Figure 2.2 shows the

D2 signatures for several objects in various classes. The L1 distance is the preferred

way to measure the similarity of shape distributions. By using a random sampling,

the method is not severely impacted by local problems or missing sections in the

object model. Shape distributions are invariant to rigid motions. Figure 2.3 shows

the best five matches returned from a database in response to select query objects.

The ability to classify shapes with 66% accuracy is reasonable for coarse matching,

but is not sufficient for discriminating fine details.
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Figure 2.3: Best matches returned from a database for select query objects.
Adapted from “Shape Distributions”, Osada et al., ACM Transactions on Graphics,

21(4), 2002.

Mori et al. [119] apply shape contexts to the shape retrieval problem. Shape contexts

represent the shape of an object, with respect to a particular point on the object, as

a 2-D histogram of the relative coordinates of other points sampled from the surface.

Shape contexts can be computed for representative points on an object and stored

in a database. Shape retrieval is reduced to computing a number of shape contexts

for a query object, and searching for similar shape contexts in the database. Shape

contexts are useful for coarse shape matching. Because they use a sampled set of

points from the surface, shape contexts are relatively insensitive to moderate levels

of occlusion, but this sampling of points also limits their usefulness for detailed shape

matching.

2.2.2 Local Descriptors

Johnson and Hebert [84] propose the spin image as a way to encode the global shape

of the object with respect to any oriented point on the surface. Oriented points consist

of a point on the surface and a normal direction. Spin images can be calculated at

each point on the surface and also for points in a scene. The spin image is stored as

a discrete 2-D array. Finding similar spin images in a scene and in the 3-D model

establishes a correspondence between them. Spin images can take into account all or
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a subset of the points on the surface of the object. However, errors can be introduced

if the distribution of points on the surface of the scene is not proportional to the

distribution of points on the model.

Geodesic fans [186] represent a local surface resampling that provides a uniform struc-

ture in the neighborhood around a vertex. In particular, a geodesic fan consists of

a set of spokes, and a set of samples on each spoke. The spokes are geodesic curves

marching out across the surface from a central point, equally spaced in the conformal

plane of the point’s local neighborhood. With the samples equally spaced along each

spoke, they form a local geodesic polar map around the point. Zelinka and Gar-

land use interpolated normal geodesics [15] where possible, reverting to straightest

geodesics [137] if the smoothness criterion for interpolated normal geodesics is not

met. Different properties can be represented as the signals at the points of the polar

map. Zelinka and Garland use distance from the tangent plane and non-geometric

properties such as texture to perform similarity based editing, however any other

property could be used as a signal in the geodesic fan construct.

The point fingerprint [167] is a signature for local shape matching. The point fin-

gerprint at a point consists of a set of concentric geodesic circles projected to a

tangent plane. Points of interest are selected by applying a threshold to an irregu-

larity measure on one of these contours. Shape similarity is computed by comparing

corresponding normals and contour radius along each contour. This is analogous to

the similarity calculation for geodesic fans [186], with the normal and projected radius

used as the signal at the fan points. However, this similarity is only computed for

the subset of ‘interesting’ points. Unlike these approaches, we are looking for subtle

shape differences that require more than signatures just at ‘interesting’ points.

2.2.3 Graph Representations

Skeletal methods represent the shape of an object by capturing the structure of the

object, along with properties at the points on the skeleton that define the distance

from the skeleton to the surface. Bloomenthal and Lim [16] discuss animation of

an object by defining motions of its skeleton, in addition to issues in generating the

skeleton and reconstructing the object surface from the skeleton. Siddiqi et al. [160]
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Figure 2.4: Geodesic distance function for a frog in two positions. From “Topology
Matching for Fully Automatic Similarity Estimation of 3D shapes”, Hilaga et al.,

SIGGRAPH 2001.

match shock graphs by converting the shock graph to a tree structure and recursively

matching rooted subtrees.

While the medial axis of a 2-D shape is a graph structure, for a general 3-D object the

medial axis is represented as a surface. The shock scaffold, proposed in Leymarie and

Kimia [99], is a way to represent the medial axis of a 3-D object as a graph. Points

on the medial axis are classified as one of five types, based on the type of contact

with an osculating sphere. Two of these point types become isolated points in the

graph, while two other point types form curves. The direction of increasing distance

to the boundary is used to add the notion of flow along curves.

Given the skeletal representation for the shape of an object, the structure of the

skeleton and the properties represented at points on the skeleton can be used as

features to compare objects. Mortara and Patane [120] uses a Reeb graph based

on curvature properties as a skeletal representation. Regions of high curvature are

treated as surface features. A graph is constructed by growing from these curvature

regions to cover the surface. The starting point is a surface mesh, and smoothness of

the skeleton relies on a uniform mesh. An advantage of this representation is that it

is invariant under affine transformations.
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Hilaga et al. [74] presents a matching technique using a multi-resolution Reeb graph.

They define a function at each point based on the geodesic distance to all of the other

points on the surface. The algorithm then generates the Reeb graph as a skeleton

representation of the segmentation of the surface based on the values of this function.

Different resolutions are generated from different levels of segmentation. Matching is

performed by comparing the graph structures at the different levels. This method can

match objects with significant relative deformation, as long as the geodesic distances

do not change too much. An example of the geodesic distance function for a frog in

two different positions is shown in Figure 2.4. The Reeb graph is primarily global

rather than local. Chen and Ouhyoung [26] improve on the method of Hilaga et

al. [74] by additional preprocessing, speeding up re-sampling to break edges greater

than some threshold, and calculation of geodesic distances.

Bespalov et al. [13] present a framework for 3-D shape matching using scale-space

decomposition. The first step is to decompose the model M into its k most significant

features using singular value decomposition (SVD) clustering techniques. The graph

nodes are the features created by recursive decomposition of the model, and edges

relate a feature to its sub-features. The graphs can be interpreted as a tree structure,

and graph similarity measured in terms of the similarity of the subtrees.

Graph representations, such as skeletons [16, 90] and multi-resolution Reeb graphs [74],

like algorithms based on point sets [12, 146, 29, 4, 23, 107], can be useful for comput-

ing similarity and registration. But these methods are primarily global rather than

local and do not identify local features of interest. Often, they are also sensitive to

the distribution of the mesh points.

2.2.4 Segmentation

Segmentation is the process of dividing a surface into regions based on some sur-

face property. These methods can be based on the signs of the Gaussian and mean

curvatures [114] [184], isosurfaces and extreme curvatures [182], or watersheds of a

curvature function [111] [112] [142]. Related methods compute critical points using

principal directions.
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One of the benefits of segmentation is a reduction in the complexity of the matching

problem. This occurs because the smaller number of regions is typically more compact

than the original object representation. Because these regions are based on intrinsic

properties of the surface, they are also less dependent on the resolution of the surface

representation. In the methods above, curvature is the most common property upon

which the segmentation is based. Unfortunately, splitting the surface into regions still

gives only coarse information about the differences between local regions, and small

changes to the shape can cause large changes in the segmentation.

Pohle et al. [136] propose a two-level segmentation process in which an initial coarse

segmentation is followed by adaptation of an active surface to the object bound-

ary. This method operates on a 3-D voxel representation of the object. Applied to

liver segmentation from 3-D CT images, the method shows promise for automatic

segmentation as part of the feature detection process.

Maintz et al. [110] describe the use of simple morphological tools for voxel-based

registration of 3-D medical images. They employ the morphological operators of

erosion, dilation, opening, and closing to enhance contrast and simplify images. They

apply these techniques to images of different modalities. These methods are limited to

rigid transformations and are currently too time consuming for real-time applications.

Vivodtzev et al. [182] perform segmentation of the brain surface based on mean and

Gaussian curvature. An aligned set of images is used to provide volume data and the

surface is obtained via isosurface extraction. Key details of their technique include

preprocessing of the data with a low-pass smoothing filter, ensuring a single surface

by using a surface growing algorithm, and use of a multi-resolution representation

to determine the most significant features. The cerebral cortex consists of concave

(sulci) and convex (gyri) folds. The most convex and most concave locations are

used as seed points for automatic generation of a topology graph. Because of the

complexity of the surface, the coarse segmentation is more useful for capturing the

basic topology of the object.

Wilson and Hancock [184] label regions as one of eight possible types, based on the

mean and Gaussian curvature values. The curvatures are calculated using the eigen-

values of the Hessian matrix. Additional constraints, specifying which region types
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can be adjacent to other types, ensure that the labels are consistent with physical

reality. If labels do not satisfy the consistency constraints, which should be changed?

The authors solve this by defining label probabilities and employing a relaxation

technique. This improves the structure of curvature regions. The location of the

region boundaries is generally close, although they may still vary slightly from the

corresponding boundaries on the physical surface.

McIvor et al. [114] present methods for identifying simple geometric shapes from 3-D

range data. First, the local curvature is estimated at each visible point. Then the

signs of the Gaussian and mean curvatures are used to distinguish between planar,

spherical, cylindrical, and ruled surfaces. Boundaries of these regions are identified

where the sign of the curvature becomes inconsistent with the region shape. This

method depends on a curvature calculation method that is robust to noise. Also,

some surface shapes, such as a torus, are not included in the basic shapes. One issue

was over-segmentation produced by the unsupervised Bayesian classification approach

used for the spherical and cylindrical surfaces.

Mangan and Whitaker [111, 112] describe a method for partitioning 3-D surfaces based

on watersheds. This is an extension of work applied to segmentation of images. Areas

of high total curvature determine the boundaries between regions. Small fluctuations

in curvature can cause over-segmentation, which is repaired by merging regions having

low watershed depth with one of its neighbors. This method shows sensitivity to both

noise and the user-specified watershed depth threshold.

Pulla et al. [142] modify the watershed segmentation scheme of Mangan and Whitaker

by considering segmentation using mean curvature, root mean squared curvature, and

absolute curvature. In their tests, absolute curvature was preferred, with the fitting

methods providing better accuracy than the discrete curvature calculations. The

fitting methods also have advantages at boundaries. Unfortunately, the method also

requires user selection of a threshold for merging watersheds, which varies from case

to case.

Steger [163] proposes a method to compute watersheds and watercourses from digital

terrain models with sub-pixel precision. The digital terrain model is represented as

a range image. The method is based on extracting the critical points and accurate



27

principal directions. Smoothing is required to remove noise, and the image is con-

volved with the partial derivatives of a Gaussian kernel to get the partial derivatives

of the image. The eigenvalues of the Hessian matrix are used to classify the critical

points and compute principal directions. Integration along the principal directions

then locates ridge lines and valley lines. The graph formed from critical points and

these ridge and valley lines is used to extract hills and valleys.

The Connolly function is a function for which the extrema represent knobs and de-

pressions which can be matched to model docking of molecular surfaces. Cazals et

al. [25] investigate the Connolly function for triangular meshes and construct a dis-

crete Morse-Smale decomposition to segment the surface into regions where the flow

of the Connolly function is uniform.

Graph cut algorithms have been used to segment images [20] and medical datasets

[19, 89]. They are effective at assigning the vertices of a graph to either a feature

(foreground) or background set, based on graph properties such as the gradient of

the image intensity. Some of these methods employ an interactive step, where the

user identifies feature and background seed points, to guide the algorithm to the

objects that are to be separated. We treat our mesh as a graph and apply the graph

cut algorithm described in Section 5.3, and identify features based on the resulting

segmentation.

Katz [85] segments a mesh into visually meaningful sub-meshes following the minima

rule. The minima rules states that boundaries of parts lie along contours of nega-

tive curvature minima. This approach also uses mesh coarsening, multi-dimensional

scaling, and feature points, and finds a core, min-cut for final region definition.

2.2.5 Features

Features are characteristics of objects that can be used to compare one object to

another. A feature may be defined at a point or over a region of a surface. Features

may simply exist or not, or may have an associated value or vector of values that can

be compared numerically. Features are highly case dependent.
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The quality of the features has a direct bearing on the ability to solve the correspon-

dence problem. This quality can be affected by the choice of parameter values and

used-defined thresholds. Several techniques have been used to either avoid the need

to select parameter values and thresholds, or to automate the selection process.

Falcidieno and Spagnuolo [48] describe reasoning to extract curvature-based surface

properties such as convex, concave, planar, and saddle shaped regions. Cohn and

Hazarika [31] consider qualitative spatial reasoning as a way to describe the world,

independent of any quantitative model. They look at ontology (theories about the

nature of space), topology, and difficulties representing shape and spatial changes

qualitatively.

Interrante et al. [82] enhance the visualization of surfaces by highlighting features such

as ridge and valley lines. Because they are concerned primarily with visualization,

a stable approximation is preferred to a more complex calculation of the ridge and

valley lines. These ridges and valleys are identified from the local minima and local

maxima of the first principal curvature.

Ma and Interrante [108] identify key edges by looking at the angle between normals

of adjacent triangles. If this angle exceeds a global threshold, or a local threshold

based on the angles between other nearby triangle pairs, that edge is used to support

the visualization task. This specific definition of features is not so useful for smooth

surfaces, but the general concept may still be appropriate for aligning objects.

A volume skeleton tree (VST) [169, 170, 171] is used to partition terrain surfaces and

volume datasets based on critical points such as maxima, saddles, and minima. These

features are applied to view morphing and transfer function design, and can be based

on surface properties such as curvature.

The Scale-Invariant Feature Transform (SIFT) [106, 87] produces a large number of

distinctive key points as scale space extrema. These key points are generated from a

difference of Gaussian functions at multiple levels. This is a common technique for

detecting features in images, but can also be applied to functions on the surface of

an object.
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2.3 Shape Comparison

This section presents a variety of shape comparison methods. Selected methods are

listed in Table 2.3. Alt and Guibas [2] and Veltkamp and Hagedoorn [181, 179, 180]

survey a variety of methods to compute a quantitative difference between objects.

Several methods compute an alignment between objects directly. A few methods

pick the best alignment from the set of all possible alignments. The correspondence

does not need to be calculated as part of the alignment process. The method of

moments [73] uses global properties, namely the center of mass and the principal

axes, to align data sets.

Registration involves determining the relative transformation that will best align two

objects. Simple transformations typically include rigid (translation and rotation), or

affine (translation, rotation, and shear) transformations. More advanced transforma-

tions may be projective, nonlinear elastic, or piecewise. These more sophisticated

transformations have the potential to transform one object so that it conforms more

closely with the other. This may make the correspondence problem easier, at the

expense of a more complex transformation. However, the non-rigid effects of the

transformation may also mask the differences between the objects. In order to com-

pute the differences between the objects, we may prefer a rigid transformation to get

the best alignment of only the parts of the objects that really do match.

Correspondence is the process of mapping features of one object to features of the

other. This is highly dependent on the features identified. Features can be points,

global properties, local properties, or vectors of properties.

Registration and correspondence are closely tied in most shape matching methods.

Determining how to align ObjectA with ObjectB depends on the corresponding fea-

tures in A and B. Furthermore, which features correspond may be based on the

choices that yield the best alignment and match between the objects. Again, the

key concept in these methods is combining or alternating between the alignment

and correspondence steps. This is a fundamental but powerful observation, which is

straightforward to translate into practical applications.
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Chui and Rangarajan [29] point out that “solving for either the registration or the

correspondence once the other is known is much simpler than solving the original,

coupled problem.” We follow their example in distinguishing between methods that

primarily deal with registration, correspondence, or combine both.

In order to reduce the size of the correspondence space, some methods group fea-

ture points into higher level structures using object parameterization. Fitting curves

and/or surfaces to the extracted features produces a simplified correspondence space.

However, fitting and feature extraction do not extend easily to the complex general

case. This is further complicated if the data includes noise.

The coupling between registration and correspondence makes it very difficult to solve

this problem directly. However, alternating between solving for the transformation

and solving for the correspondence is a practical approach.

These signatures for shape retrieval are applicable to coarse shape matching, but

generally are less discriminating between similar shapes. On the other hand, the use

of angle and distance measures and oriented point functions can provide insight into

additional feature detection approaches.

A focus on accurate registration and correspondence is required in order to provide

detailed comparisons between 3-D objects. This goal of detailed comparison will

affect our choice of features and the methods we use to align objects.

Golland [66] uses a distance transform as a shape descriptor, and employs support

vector machines (SVMs) with Gaussian kernel functions for learning with small sam-

ple size. Cross validation is used to analyze performance.

Gelfand et al. [62] presents an example which develops a coarse matching followed by

an ICP alignment step. They propose an integral volume descriptor used to detect

feature points which are persistent at multiple scales. A voting scheme is used along

with a pairwise distance matrix and rigidity constraints which filter out incorrect

correspondences.

One can also check the quality of the match [122] to pick the best threshold. A

similar multi-scale approach [6] has been applied to medical image analysis, with
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classification based on the sign of mean and Gaussian curvature. In addition, multi-

step algorithms have been used successfully with curvature-based registration, where

an initial coarse computation is followed by a second refinement step.

Biber and Strasser [14] propose a step between feature extraction and establishing

correspondence, in which each feature is assigned a uniqueness with respect to other

features. This enables automatic determination of matching thresholds that minimize

the likelihood of incorrect or ambiguous matches. Correspondence is assigned between

features only if the distance between the objects is less than the uniqueness of the

object relative to other objects in the domain. This method has limited applicability

in cases where uniqueness cannot be assumed, for example, where several features

may be very similar or even identical.

Another alternative to the uniqueness of features is to compute the saliency of fea-

tures. Saliency is a representation of the relevance, but does not require that the

features be unique. Curvature-based saliency detection has been proposed by build-

ing high-level features from local surface descriptors [58], and by creating features

from non-trivial local shapes and center-surround filters with Gaussian weighted cur-

vatures [97]. However, in these cases, the features generated tend to be too localized

for detailed shape matching.

Li and Guskov [100] use smoothing of a point cloud to generate a scale-space rep-

resentation. From this multi-scale representation, salient features are computed as

the extrema of the change in the normal between adjacent levels. Then a signature

is computed as an M × N array by sampling a disc around the feature point, pro-

jecting normals onto the direction connecting the feature point to the sample point,

and applying discrete Cosine and Fourier transforms. This approach yields a suitable

number of feature points for shape matching, and has been used to align multiple

scans of objects.

Liu and Heidrich [102] looks at the problem of constructing a 3-D model from multiple

views of an object. Hardware acceleration is used to efficiently register partial 3-D

volumetric models with each other. The method is a variation of the iterative closest

point algorithm with the graphics hardware used to evaluate the error between partial

models. The off line version of the algorithm can be used to produce a highly accurate
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registration. The alignment metric is the sum of absolute pairwise distances in the

region where the models overlap, normalized by the number of overlapping pixels.

Maillot et al [109] present one of the first papers to use the concept of an atlas,

or collection of parameterizations. They “cut up” the mesh into regions based on

curvature. Each of these regions is flattened out using an optimization procedure,

with a parameter that allows distortion to avoid flipping. However, this method is

interactive, requiring user input to define the atlas structure.

2.3.1 Point-based Comparison

There are several methods developed for sets of points. The Bottleneck distance [45]

is the minimum of the maximum distances for all possible one-to-one correspondences

between two point sets. This requires that the point sets have the same number of

points.

The Hausdorff distance [79] finds for each point in one set, the distance to the closest

point in the other set, and takes the maximum of these distances. It is susceptible to

noise in the point locations. Variations of the Hausdorff distance [7] have attempted

to reduce the noise sensitivity. Both of these methods are primarily global rather

than local.

The Hough transform [8] divides the transformation parameter space into bins and

uses a voting scheme to select a best transformation. By restricting the problem to

a finite set of possible alignments, methods such as the Hausdorff distance [79], the

alignment method [178], and geometric hashing [79] can try all possible alignments

to select a best alignment. These methods can align objects under rigid, affine, and

projective transformations, but are not easily extended to more general transforma-

tions.

The iterative closest point (ICP) algorithm [12] uses a nearest-neighbor relationship

for the correspondence step, and the correspondence is used to refine the transfor-

mation. It iterates to converge to a local minimum, but assumptions break down for

non-rigid transformations and outliers.
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The ICP method requires a reasonably close initial alignment. In a number of tech-

niques, a coarse alignment is generated prior to applying the ICP or a modified ICP

algorithm. Planitz [134] looks at a number of methods and proposes a correspon-

dence framework. This framework breaks down correspondence calculation into five

tasks: (1) region definition, (2) feature extraction, (3) feature representation, (4) local

matching, and (5) global matching. Different techniques can be characterized by how

they perform the five tasks, and new approaches can be generated by taking different

combinations of the candidate techniques for each task.

Ichimura [81] addresses the issue of tracking feature points from frame to frame in

a sequence of frames. A key issue is deciding when new features appear or disap-

pear during a sequence of frames. Feature points are extracted by a corner detector.

Normalized cross-correlation is used as the similarity measure. The search region for

a feature point is based on the location in the previous frame. In this context, the

transformations are generally constrained, such that the solution of the correspon-

dence problem can make use of frame-to-frame similarity and final registrations can

be done after the fact, based on the correspondence.

Planitz et al. [135] looks at the problem of automatically generating a correspondence

between two 3-D models. They propose a signature based on a local region around

select vertices. A distance measure, D1, is defined from the distances between a

selected vertex and other points in the local support region. An angle measure, A1,

is based on the angle between normals at the selected vertex and at other points in

the local support region. The signature is a combination of D1 and A1. First, all

potential matches are found by locally matching vertices. Then the number of matches

is reduced by checking combinations of matches for geometric consistency. The final

correspondence is chosen based on the best alignment of the models. However, the

use of distances and angles between normals for points in a local support region makes

this method sensitive to point distributions.

Huttenlocher [80] presents an exhaustive method for point sets that uses two (2-D)

or three (3-D) reference points in each set to align the point sets to a reference frame.

The measure of similarity is the number of points in one set that have a corresponding

point in the other set, within some tolerance. After trying all combinations of points,

the reference frame with the highest matching score is selected.
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Geometric hashing [96] tries to speed up the matching process through the use of

preprocessing. Versions of each model based on each possible reference frame are

stored in a global hash table using all coordinates as the hash key. Then, to match

an object, similar hash table entries are calculated for several reference frames, and

hashing into the table produces votes for the (model, frame) pair stored at that hash

table entry. This method can just as easily be applied to features extracted from the

object.

2.3.2 Models and Morphing

Another topic of interest, which is supported by parameterization methods, is the

morphing of one shape into another. While such morphing can be applied directly to

a point set, it is often more useful if the parameters can be associated with scientific

principles. Studies in anthropology often assess the differences in bone or fossil struc-

ture to infer information about the subjects. For example Niewoehner infers changes

in behavior between Neanderthals and the Skhul/Qafzeh hominids [125], based on dif-

ferences in hand structure. They generate landmark coordinates photogrammatically

and then perform a Procrustes alignment followed by principle component analysis

(PCA) to capture isometric and overall shape variation. The PCA scores for different

known classes can be used to develop a classifier that can be applied to unknown

classes, such as the Skhul/Qafzeh hominids, to determine where they fall relative to

the known classes. The constrained spherical parameterizations above [5] can also be

combined with PCA, so that morphs can be generated from different weights on the

principle components.

Geometric morphometrics represents objects in shape spaces, and performs a statis-

tical analysis of the transformation between these shape spaces. This approach has

been used to model and visualize the a current evolutionary hypothesis concerning

the shape changes over time between extant species and their ancestors [183]. Similar

to the approach above, the method relies on a set of manually generated landmark

points. The associated parameters represent placement on an evolutionary tree.

All of the above methods still rely on manually generated landmark points, although

some tools are provided to assist the user [183]. A more automatic approach is to
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minimize an energy function that represents the quality of the correspondence between

objects [158]. Given correspondence between the objects, a model can be built as

combinations of corresponding points. This automation of the point correspondence

still leaves us with limited meaning associated with the shape parameters.

Some representations define the boundary of an object by splines, planes, or other

analytic functions. Turk and O’Brien [177] model the transition of morphing of one

object into another as an implicit function in one higher dimension. They generate

this function using radial basis functions to fit between the two surface representations

modeled as scattered data points from the surface of each object. This higher dimen-

sional surface, or properties derived from it, may be useful to describe the changes

in the object as it transforms from one shape to another. However, this function still

does not take into account the correspondence between features, and is not based on

any specific information about how one object should deform into the other.

Bookstein [18] decomposes the deformation of a set of landmark points into bending

modes, called principal warps, of a thin-plate spline interpolated through the points.

The modes are derived from the eigenvectors of the bending energy matrix. These

warps can be used as features for comparing objects, for describing specific deforma-

tions, or to align a specific object to a standard atlas. Bookstein’s work is particularly

interesting because decomposing deformations is closely related to describing the dif-

ferences between similar objects.

Chui and Rangarajan [28] use a thin-plate spline to generate a non-rigid mapping

for 3-D brain MRI sulcal point matching. The approach alternates between solving

the correspondence problem and the registration problem. The softassign technique

is used to relax the binary correspondence to a continuous valued matrix, so that

the correspondences do not approach binary values until the transformation begins

to converge. In addition, deterministic annealing adds an additional entropy term

that is gradually reduced as the minimization process proceeds. They refer to the

general point matching algorithm as robust point matching (RPM). One strength of

this method is that it is relatively insensitive to points that are outliers.

Another approach to shape comparison is through modeling. Davies et al. [37, 38]

construct a statistical shape model that defines modes of variation. This shape model
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encodes correspondence acquired from parameterization of a training set, and is rep-

resented by a minimum description length. Cootes et al. [33, 32] define active shape

models which capture natural variability of an object. Points are placed on the

training set manually, and then principal component analysis (PCA) is used to find

independent parameters and principal modes of variation. These active shape models

are applied to medical datasets.

Styner et al. [165] evaluate four statistical models for analyzing anatomical objects

from medical datasets with manually selected landmarks. The evaluation criteria

included generalization outside the training set, compactness, and specificity. The

spherical harmonics method, tied to a Procrustes alignment, was the least accu-

rate, while the minimum description length and determinant of the covariance matrix

methods performed best.

Haker et al. [68] propose an elastic registration method based on optimal mass trans-

port. They apply the method to a 3-D brain deformation sequence and to surface

warping of a colon surface. The 3-D deformation case uses voxel data. The colon

surface case is flattened to a plane using a conformal mapping technique. An area

correction is applied to the initial mapping to preserve the size of surface structures.

This technique is parameter free and optimizes mass transport, as calculated from

the movement of the surface, weighted by an assumed density.

Fookes and Maeder [56] propose a hybrid non-rigid registration scheme combining the

viscous fluid algorithm with mutual information (MI). The viscous fluid algorithm has

been used to recover large local mis-registrations between two images, but assumes

similar intensity values between images. This method produces results similar to the

thin-plate spline warp, but is not as good as Gaussian convolution.

The Monge-Kantorovich Metric [144], also known as the transport metric or earth-

mover’s distance, measures a cost needed to transform A into B. This cost is related

to the energy necessary to move surface elements represented by a corresponding

mass.

Other methods assign attributes to points based on the way they can move. Sclaroff

and Pentland [151] develop a modal matching method based on a mass and stiffness
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Figure 2.5: Correspondence between two shock graphs. From “Shock Graphs and
Shape Matching”, Siddiqi et al., ICCV 1998.

matrix. Correspondence is determined by each point’s participation in the eigen-

modes calculated from the decoupled dynamic equilibrium equation. The main issues

with these methods is intolerance of outliers and accuracy limitations from just com-

paring eigen-modes.

2.3.3 Graph Matching

Graph matching is another tool frequently applied to object recognition. Labeled

graph matching represents a pattern by a graph where nodes are labeled with feature

information and links indicate topological relationships between features. Features

may be based on invariants or other properties such as geodesic distances. More

complex features may be represented as a vector of features or using a multi-resolution

approach.

One challenging topic of research in medical imaging is brain imaging. The complexity

of the brain structure (see Figure 2.6) and the availability of MRI data make this a

popular area of research. One of the key problems is atlas-based labeling of a brain

MRI. Perchant and Bloch [132, 133] apply fuzzy graph homomorphism to the brain
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Figure 2.6: Brain surface segmentation. From “Segmentation, Modeling, and
Registration - Introduction to Computer-Integrated Surgery” by Russell Taylor.

structure recognition problem. They note that in order to capture all the boundaries

of the anatomical brain structures, when comparing segmentation of a brain image

with segmentation of a reference brain atlas, over-segmentation is required. As a

result, they introduce “graph fuzzy morphism” which relaxes the notion of a binary

relation between nodes to a fuzzy relation based on the degree of correspondence

between corresponding nodes.

Recent methods have used entropy-based measures to align images, rather than try-

ing to identify specific correspondences. Neemuchwala et al. [123] investigate a graph

matching scheme using higher dimensional image component analysis (ICA) feature

vectors and a minimal graph entropy estimator. The method is applied to the regis-

tration of a pair of ultrasound images.

Klein et al. [91, 90] compares 2-D shapes by computing shock graphs for each shape,

and then computing a cost to convert from one shock graph to the other. The shock

graph is the medial axis of the shape, along with information at each point about the

distance to the boundary. The shock graphs for two fish are shown in Figure 2.7. Note

the differences in the structure of these graphs. The edit-distance, which represents
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Figure 2.7: Shock graphs for two fish. From “Shape matching using edit-distance:
an implementation”, Klein et al., Symposium on Discrete Algorithms, 2001.

the cost, is computed using dynamic programming from the costs to deform edges of

one shock graph into any edge of another shock graph.

In addition to the cost, matching algorithms can also find corresponding edges of the

graphs. The correspondence between the graphs for two tools is shown in Figure 2.5.

However, this is most easily accomplished if the graphs have the same structure.

Another approach is inexact weighted graph matching. Shapiro and Haralick [154] use

the spatial relationships between points to constrain the search for correspondences

between point sets.

Bengoetxea et al [10] develop a graph matching algorithm using a stochastic heuristic

search strategy called estimation of distribution algorithms, or EDAs. In applications

to the human brain, node attributes were the gray level (intensity) and region size in

the image, and edge attributes indicate spatial relationships such as relative position

and distance.

Gold and Rangarajan [63] develop a “graduated assignment” algorithm for the prob-

lem of weighted graph matching. This algorithm uses a permutation matrix to iden-

tify the correspondences between graphs, but relaxes the constraints on this matrix

to allow real values, representing probabilities of particular correspondences. As the

solution progresses, changes to a control parameter force the probabilities to approach

integer values, representing true permutations.

For solving the subgraph isomorphism problem, Eppstein [47] looks at algorithms

and their time complexity. He identifies improvements that can be achieved when the
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graphs are represented as tree structures and the tree-width of the subgraphs can be

limited.

2.3.4 Energy Functions

Lai and Fang [95] formulate image alignment as an energy minimization problem to

estimate an affine transformation. The method is intensity-based and the energy

function is a weighted sum of squared differences. An iterative re-weighted least-

square approach is used to minimize the energy function using a robust ρ-function.

Robust estimation allows this method to be robust to partial occlusion.

Shelton [158] also uses an energy function to represent alignment quality. The method

includes terms for similarity, structure (directional springs), and prior information.

Weights on the terms vary during the iterative solution. Mesh simplification is used

to increase efficiency.

2.3.5 Template Matching

Template matching applied to images entails classifying samples of the image by

comparing them to known templates. Cox [35] discusses template matching in the

context of detecting an n× n sub-image g within an N ×N search area s that best

matches an n × n template f . The key issue is determining the similarity (or dis-

similarity) between two n × n sub-images. He presents several measures including

correlation measures such as normalized cross-correlation, intensity difference mea-

sures such as root mean square distance and sum of the absolute valued differences,

sign change criteria, and distortion measures such as weighted squared error. He also

formulates similarity detection as a filtering process, and proposes filters aimed at

optimizing different signal-to-noise ratios. Cox also presents techniques such as fast

fourier transforms and different template matching schemes to improve efficiency.

De Souza and Montenegro [162] describe two methods developed to align noisy im-

ages of protein structures, one based on similarity and one using templates. The



42

similarity-based method uses an exhaustive search after creating a discrete orienta-

tion space. After aligning the centers of mass, the best match is chosen by testing

all possible rotations within this orientation space. For the template-based method,

edges are first extracted from the image. Then versions of the template for all pos-

sible orientations and sizes are compared with the image, choosing the best match

between the template and the image edges. Efficiency is achieved by creating tem-

plates in different orientations, and by comparing the edges of the template instead

of the entire template. This allows the template-based approach to run faster than

the similarity-based method.

Sebe and Chen [152] develop a one-dimensional method for template matching. A

2-D template matching using the sum of square differences and an affine motion

model is slow due to the size of the least-squares problem. As an alternative, they

propose summing rows and columns to reduce complexity. This produces a new

template which is 2N instead of N2. However, it is also an approximation of the

original template image. This method is applied to the real-time tracking problem

and compared to corner tracking and a standard 2-D template matching method.

Template matching is most appropriate when there is prior knowledge of the object

being matched. Unfortunately, this is not the case for general shape comparison. In

addition, representing the possible deformations becomes prohibitive, limiting this

method’s usefulness for non-rigid transformations.

2.3.6 Parameterization

A surface parameterization defines a mapping from points on the surface of an object

to a canonical shape, such as a plane, sphere, or N-holed tori. For each surface

point mapped to a plane, the 2-D coordinates in the plane become the parametric

coordinates for the surface. The mapping from the surface to the plane forms a

parameter space.

Closed surfaces cannot be mapped to a plane without cutting. However, the spher-

ical topology of genus zero surfaces naturally maps to a spherical, and higher genus

surfaces can be mapped to N -holed tori. Except for the torus, closed surfaces do not
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Radius
(Distal end)

a) Surface b) Texture mapped (checkerboard pattern)

Figure 2.8: Texture mapped bone surface. (a) Surface. (b) Checkerboard texture
map applied to the surface.

admit a global 2-D parameterization. These surfaces may be segmented into multiple

regions, each of which can have a local mapping to the plane. This mapping can be

generalized using a manifold, where multiple charts, each having its own 2-D param-

eterization, are laid out to cover the surface of the canonical shape. The mapping

through the canonical shape then provides a parameterization of the original surface.

Parameterizations are useful for distributing and interpolating data on a surface. For

example, one might measure the pressure at several locations on the surface of the

heart, then interpolate (using the parameter space to determine nearby points) to get

data at other locations on the surface of the heart.

Another major application of parameterization is texture mapping, where the goal

is to map 2-D images or textures onto 3-D surfaces without introducing visually

displeasing distortion. Figure 2.8a shows an example of a radius (distal end), and

Figure 2.8b illustrates texture mapping applied to this bone. Note the distortion of

the areas of the squares mapped to the surface.

Only in rare cases can a mapping be generated that preserves both relative distances

between points on the surface, and the angles between intersecting lines on the surface.

Therefore a parameterization introduces distortion. A more severe issue is folding.
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Folding occurs when different points on the surface map to the same points in the

plane, and can make the parameterization useless. A number of techniques have been

developed to try to eliminate folding and minimize distortion.

Techniques for parameterizing meshes range from ad-hoc to fairly well principled.

Most parameterization techniques attempt to create a mapping from the surface to

the canonical shape that maintains some property, such as area or angles. They may

also place constraints on the input data, for example requiring that the object be

convex, to ensure that the parameterization does not fold.

In this work, we use techniques that flatten local regions, which are homeomorphic to

a disc, onto the plane, as well as techniques that map genus zero surfaces to a sphere.

Mapping 3-D Surfaces to 2-D

The simplest parameterization technique is to find a suitable plane, and project each

point onto the plane in the direction normal to the plane. A pair of orthogonal

directions in the plane can be chosen arbitrarily to define parametric coordinates in

the plane. Often, the plane is defined to be tangent to the surface at some point, or

may represent a least squares fit to the points on the surface. This may be acceptable

for parameterizing local regions or surfaces that are nearly planar, but is generally

unsuitable for most surfaces. The more curved the surface, the more distortion is

introduced, and often, folding cannot be avoided.

Floater [54] presents a technique for mapping a disk of triangles to the plane, using a

linear least-squares solution. The boundary of the mesh is mapped to the boundary

of the desired parameterization (usually a square). Each interior vertex tries to map

to the centroid of its neighbors. This mapping is guaranteed not to fold, if the

boundary is convex. He extends this work to meshes with n-sided polygons [52] (as

opposed to triangles), and to data points without a mesh [53, 51]. Once the points

are projected onto the plane, a Delaunay triangulation yields a triangular mesh, if

desired. Techniques for ordering the boundary and picking weights for the interior

vertices are also presented. Unfortunately, the use of a prescribed boundary shape
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for the projection to the parametric space may not be consistent with shape of the

3-D region being parameterized.

Levy et al [98] develop a technique for producing a conformal mapping of a set

of polygons. No guarantees are given concerning folding. This is very similar to

Desbrun’s [39] technique for conformal mapping, but more expensive to compute. It

also contains methods to split up the mesh into sections and arrange them for use in

texture mapping.

Praun and Hoppe [140] use a regular polyhedron as the domain and map the mesh

to this regular polyhedron, minimizing a measure of conformality plus stretch.

Praun et al [141] present an approach to “lining up” two parameterizations of two

different models. It requires user intervention to identify the corresponding points

in different meshes at the coarsest level. A conjugate gradient approach is used to

solve a linear system with weights based on Floater’s method [54]. This approach is

hierarchical, lining up the lowest level of the mapping, then the next level, and so on.

Sheffer and de Sturler [155, 156] propose an angle-based flattening approach. The

basic idea is that every interior vertex of a flattened mesh must have a sum of angles

equal to 2π. The flattened mesh does not fold (although it may overlap). To improve

on the area distortion, Sheffer and de Sturler [157] use Laplacian flow on a grid to

alter the initial parameterization. This reduces size distortion while relaxing the

angle distortion requirement. The fundamental concept is to lay a grid across the

parameterized mesh and grow or shrink the edges in proportion to the ratio of the

physical area to the flattened area of the triangles within the grid cell.

Desbrun et al [39] develop two mappings, one based on angle preservation and one

based on area preservation, and propose a linear combination of these two mappings

to trade-off angle versus area distortion. The method can use a specified boundary, or

compute the boundary (given a specified orientation and scale) as part of the solution

process. The flattened mesh tends not to fold in the angle preserving case, although

no guarantees are given. Figure 2.1b shows the flattened mesh for the bone from

Figure 2.1a.
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Meyer et al. [116] extend the concept of barycentric coordinates to irregular N-sided

polygons. This could allow for the extension of parameterization methods for trian-

gular meshes to general polygonal meshes, but in this dissertation we will concentrate

on triangular meshes.

The approaches taken by Sheffer and de Sturler, and Desbrun et al. are most promis-

ing because they do not use a prescribed boundary, and tend to minimize the distor-

tion of the angles, with options to balance angle optimization with area optimization.

Initial indications show that minimizing area distortion is important for viewing the

relationships between features, and may also be important for detecting features,

in order to improve the correspondence based on the area associated with different

features.

Surface Parameterization

As surfaces become topologically complex, a single parameterization gives way to

different representations for local surface regions. A manifold surface model is locally

parameterized by charts that overlap at their boundaries. These charts preserve useful

properties, such as continuity and smoothness, across regions [67].

Instead of explicitly mapping surface points to a plane, a parameterization can be

applied directly to the surface of the object. For example, families of geodesic curves

placed on a surface can be used to define a parameterization. First, one geodesic

curve is created on the surface of the object. This is analogous to taking a marker

and drawing a curve on the surface, making it as straight as possible. Then construct

another geodesic curve on the surface that crosses the first curve and is perpendicular

at their intersection point. Finally, construct a family of geodesic curves which cross

the first curve and are approximately parallel to the second curve but successively

offset by a given distance. Then for any point in the region covered by the curves,

the parametric coordinates are defined based on the cross curves it is between, and

the (signed) distance from the initial curve. Geodesics can also be used to define a

local polar parameterization [186].
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An approach that simplifies the parameterization of complex objects is to first map

the object to a reference object of the same genus, and then use a standard pre-

defined parameterization approach for that reference object. This is discussed in the

next section for genus zero surfaces mapped to a sphere.

Spherical Parameterization

Several techniques have been used to map genus zero objects onto a sphere. Brechbühler [21]

uses a continuous one-to-one mapping to the unit sphere. Constrained optimization

is used to improve the uniformity of the parameterization. The parameterization

enables generation of a series of spherical harmonic functions. By first determining

a canonical position, this produces an invariant shape description. Quicken [143]

presents a similar technique, with the addition of a multi-resolution approach to han-

dle large meshes. Quaternions [77] can be used to describe the absolute orientations

on the sphere.

Praun and Hoppe [140] employ a sequential approach using a spherical parameteri-

zation as an intermediate step in mapping from a mesh to a flat image. The mesh is

first mapped to a sphere, and then the sphere is mapped to a tetrahedron, cube, or

octahedron. Each of these regular polyhedra can be unfolded into the plane by cut-

ting along select edges. A metric is presented that measures the stretching required

to transform from the mesh to the sphere, and from the sphere to the regular polyhe-

dra. Asirvatham et al. [5] extend this approach by manually defining corresponding

feature points on multiple meshes, and creating the spherical parameterizations that

align the parametric locations of these points. Constraining these feature points to

map to the same locations on the spherical parameterization generates a parametric

alignment of multiple objects.

Shum et al. [159] use the Lp distance between the local curvature functions of two 3-D

surfaces. The curvature functions are mapped to a special mesh, which is the dual of

a semi-regular triangulation of the unit sphere. This technique is only applicable to

surfaces that are topologically spherical.
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Eck et al [44] discusses more than just parameterization, but they do introduce a

harmonic map parameterization as a sub-problem. Hence, this has become the paper

to cite for a harmonic mapping of a mesh to the plane. This is essentially an edge-

based method, which tries to minimize the square of the norm of the gradient of

change in the surface parameters.

2.4 Chapter Summary

One can see that there are numerous approaches discussed in the literature, but none

of them adequately address our shape matching problem. For our work, we assume

that the objects to be compared are represented by a mesh consisting only of triangles,

i.e., a triangulation. Our approach makes use of several of the techniques presented,

particularly, the graph cut method of Boykov and Kolmogorov [20], and the flattening

of Desbrun et al. [39] and Sheffer and De Sturler [157]. Our similarity measure can be

represented as a variation of the geodesic fans [186], and exhibits properties similar

to the method of Gelfand [62]. We also rely on spherical parameterization similar to

Brechbühler et al. [21].
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Chapter 3

Curvature Calculation on Meshes

As mentioned in previous chapters, curvature is a surface property with potential

uses in object comparison. This chapter presents a new technique for evaluating the

impact of mesh effects on various curvature calculation methods. This technique is

used to evaluate several existing curvature calculation methods along with a few new

variations. As will be seen, each curvature calculation method responds differently

to factors such as noise in the mesh, irregularities in the triangulation, and overall

resolution.

3.1 Overview

Curvature is an intrinsic property of a surface and can be calculated by a variety

of techniques. Curvature metrics include scalar properties such as maximum and

minimum principal curvatures, mean and Gaussian curvatures, and vector quantities

such as principal curvature directions.

Several decomposition methods use surface curvature properties directly to iden-

tify features such as ridges and valleys, and planar, convex, concave, or saddle

shapes [184, 176, 48]. Surfaces are segmented into regions [182, 6] based on these

curvature features, and the segments and features are then used for object recogni-

tion and registration. A measure of total curvature can be used to distinguish flat

regions from regions of small curvature. There are also other feature detection and

registration methods and shape signatures which utilize surface curvature.
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Meshes support wide variations in complexity and resolution for local regions of an ob-

ject. They use a relatively simple representation consisting of vertices (points sampled

from the surface), and polygonal faces defining connectivity between vertices. Today’s

visualization tools are extremely compatible with this mesh data structure. However,

tools for extracting surface properties from meshes, for example, smoothness, have

not yet progressed to match the state-of-the-art for more traditional representations

such as those used in the Computer-Aided Design (CAD) environment.

The ability to compute curvature from meshes is complicated by the lack of an an-

alytic definition for the surface shape. Meshes are defined at discrete vertices, while

curvature is a function of how the surface behaves in a local region around the ver-

tex. This is evident since curvature is based upon 1st and 2nd derivatives, which are

themselves defined as a limit function. Thus, some assumptions on the behavior of

the surface are required to estimate curvature for a localized set of vertices, such as

a given vertex and its neighbors.

Past experience indicates that curvature metrics tend to be very sensitive to noise [83,

71]. Scanners and sensors typically introduce some noise into the data. Small amounts

of noise may be compensated for by smoothing, while large amounts may render the

data unusable. Besides noise, the mesh resolution, i.e., how finely the surface is

sampled, and regularity, i.e., the uniformity in size and shape of the mesh faces, also

affect the accuracy of curvature estimates.

Curvature calculation methods applicable to triangular meshes fall into one of three

categories: (1) fitting methods, (2) discrete estimation of curvature and curvature di-

rections, and (3) estimation of a curvature tensor from which curvature and curvature

directions can be found. We have developed a process for evaluating the accuracy

and stability of such methods using a suite of test cases that highlight the effects of

mesh properties in addition to noise. These mesh properties include factors such as

valence (the number of vertices adjacent to a given vertex) and the regularity of the

mesh. This suite is applied to several existing algorithms to examine how reliably

different algorithms predict the curvature values. This evaluation process compares

the error in mean, Gaussian, and principal curvatures, and the normal and principal

curvature directions.



51

Curvature (2-D):
• Deviation of a curve 

from a straight line

Figure 3.1: Definition of curvature in two-dimensions.

N

Curvature (3-D):
• Measure of local shape
• Intrinsic property of a surface
• Different values in each 

direction through a point

Figure 3.2: Definition of curvature in three-dimensions.

Knowledge of the accuracy and sources of error allows selection of algorithms that

are robust and reliable for tasks such as shape matching and registration. An under-

standing of the errors in the curvature calculations can be combined with techniques

from the Bayesian community to add confidence levels to the data, and to develop an

understanding of when and why a method might break down.
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3.1.1 Definitions

The curvature at a point on a planar curve is the inverse of the radius of curvature

of the osculating circle at that point. An illustration and alternate definition for cur-

vature of a planar curve is shown in Figure 3.1. For a point on a surface, there are

an infinite number of planes that contain the normal to the surface. The intersection

of each of these planes with the surface will form a planar curve through the point.

Three sample curves are shown in Figure 3.2. For the non-degenerate case, there will

be some curve where the curvature at the point is a minimum, and some curve where

the curvature will be a maximum. These curves will be orthogonal. The magnitudes

of these extreme curvatures are the principle curvatures, k1 and k2, and the tangents

to these curves at the point are called the principal curvature directions. Two addi-

tional quantities of interest are the Gaussian curvature and the mean curvature. The

Gaussian curvature is defined as the product of the principal curvatures, k1 × k2,

while the mean curvature is the average of the principal curvatures, (k1+k2)/2. The

Gaussian curvature indicates the amount of deformation of the surface required to

flatten the surface onto a plane, and is an intrinsic property of the surface. For a

more formal definition of curvature, see do Carmo [41].

For smooth surfaces, the Gauss-Bonnet theorem and Critical Point theorem relate

geometric surface properties to the surface topology, while the Theorema Egregium of

Gauss relates the intrinsic and extrinsic curvatures. Banchoff [9] proves the analogues

to these theorems for the polyhedral surface case. The Gauss-Bonnet theorem for

polyhedral surfaces, which expresses the total Gaussian curvature over a region of a

surface in terms of the properties at the boundary of the region, is the basis for several

of the curvature estimation methods applied to meshes. Brehm and Kühnel [22]

demonstrate the approximation of polyhedral surfaces by smooth surfaces, such that

the smooth and polyhedral surfaces have the same topology, and the curvature and

absolute curvature of the smooth approximation converge to that of the polyhedral

surface.
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One-Ring Neighborhood Two-Ring Neighborhood Three-Ring Neighborhood

Figure 3.3: Sample test case meshes. Left: 1-ring neighborhood (valence=6),
Middle: 2-ring neighborhood (valence=5), Right: 3-ring neighborhood (valence=4).

3.1.2 Related Work

A number of researchers [55, 149, 1, 27, 75, 70, 42] have looked at curvature estimation

from 3-D range images for computer vision applications. Range data provides a

rectangular array of sample data, usually in the form of pixels. Many of the methods

operate on an N×N window centered at a point, where N is an odd integer, typically

5 or 7. This window provides a natural orthogonal parameterization and well-defined

diagonals. Mean and Gaussian curvature can be computed from first and second

partial derivatives with respect to these preferred directions, or directly from the

array of sample data. Methods that rely on this regular organization of data are not

directly applicable to a general mesh.

Curvature estimation methods have also been developed specifically for meshes. Mesh-

es have a more general structure than range images. Mesh representations have ad-

jacency information embedded in the mesh connectivity, but without any regular

organization or preferred direction.

Two vertices are defined to be neighbors if there any face that contains both vertices.

All of the vertices that are neighbors to, i.e., share a common face with, a given vertex

constitute its one-ring neighborhood. This is extended to a two-ring neighborhood

by adding all of the neighbors of the one-ring vertices, and so on. Sample one-ring,

two-ring, and three-ring meshes are shown in Figure 3.3. A given vertex of the mesh
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can have an arbitrary number of neighbors. These vertices need not be equidistant

from the given vertex or equally spaced around the one-ring neighborhood.

Methods for 3-D range images that rely on the regular array structure, natural or-

thogonal parameterization, or preferred directions, are not readily adapted to mesh

representations. However, methods that rely primarily on adjacency, such as surface

fitting, may be adapted to mesh representations if a suitable set of vertices can be

found. This set of vertices is typically an N -ring neighborhood, where commonly

N = 1.

Past evaluations have compared specific methods, generally for very regular meshes,

and have looked at the effect of noise and the benefits of smoothing [173, 117, 65]. The

impact of other mesh factors has often been ignored. A few studies have compared

a selection of curvature estimation methods, for example on range images [164, 113],

or meshes [168, 65]. Others have focused on a particular method and then varied

factors such as mesh resolution [173, 24], the amount of noise added to the data [65],

or the shape of the surface [69]. Most of these studies evaluate these methods for a

very regular mesh. A few studies [175, 65, 145] also apply the methods to irregular

meshes, but do not address the impact of the mesh irregularity.

A few papers have performed theoretical evaluations or experimental comparisons of

selected curvature estimation methods. Meek and Walton [115] perform asymptotic

analysis for several methods using both regular data (as in range data) and irregular

data (as in meshes). The asymptotic behavior is important to insure that the methods

would converge to the correct value, but as they state, the results may not be suitable

for comparing different methods for fixed size meshes. While this asymptotic analysis

was applied only to discretization and interpolation methods, Cazals and Pouget [24]

note that ‘interpolation fitting is always more ill-conditioned than approximation’, so

one might expect similar results for approximation techniques, such as least-squares

fitting methods.

McIvor and Valkenburg [113], in comparing fitting methods for range data, note that

there is bias in the curvature estimates since cylindrical and spherical patches cannot

be represented exactly by a quadric. They also observe that for quadric fitting of

surfaces with large curvature magnitude or with large sampling noise, the eigenvector



55

associated with the surface normal may not have the smallest corresponding eigen-

value, causing the principal curvature and curvature direction estimation to break

down. Overall, their results show the quadric fitting method performs better than

the finite difference methods. Surazhsky et al. [168] compare several curvature es-

timation methods for meshes and conclude that a the Gauss-Bonnet scheme (angle

deficit) provides the best Gaussian curvature estimate, and paraboloid (quadric) fit-

ting is best for mean curvature estimations and second best for Gaussian curvature.

The focus of this work is on computation of surface curvature on polyhedral surfaces,

specifically triangular meshes. Polthier and Schmies [137] have looked at geodesic

curves on polyhedral surfaces, and define a geodesic curvature for curves on these sur-

faces. Minimizing this geodesic curvature of the curve yields the straightest geodesics

on polyhedral surfaces.

3.2 Curvature Estimation

This section describes the methods that have been developed to calculate curvature

on meshes. There are three basic approaches. The first is surface fitting, which

involves finding an analytic function that fits the mesh locally. The curvature of the

analytic function is well-defined [78]. The second approach creates discrete curvature

equations from the continuous equations by approximating integrals as a summation

of contributions attributed to each face or edge adjacent to a vertex. The third

approach develops an approximation of the curvature tensor, from which curvature

and curvature directions can be calculated.

3.2.1 Fitting Methods

The primary discriminator between fitting methods is the function chosen to model

the local surface shape. Functions may be parametric, requiring a local parameteriza-

tion of the surface near each vertex, or implicit. The chosen function is fit separately

at each vertex of the mesh, with the method solving for the coefficients of the function.
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A local 3D coordinate frame, centered at the vertex, is useful for parameterization,

and may also simplify estimation when using implicit functions.

The second discriminator is the number of vertices fit by the function. If too few

vertices are fit, the problem is under-constrained. Therefore, a minimum number of

vertices, based on the number of function coefficients, should be supplied. Fitting

the minimum number of vertices defines an interpolating function where the function

goes through each vertex. Fitting more than the minimum number of vertices leads

to an approximating function, which minimizes some measure of distance from the

function to the vertices, for example, a least-squares minimization. Fitting methods

are listed in Table 3.1. This table indicates the type of data on which the algorithms

operate, the parameterization method used, whether they require surface normals as

input, and whether they compute Gaussian, mean, or principal curvature estimates,

or principal curvature directions.

Parameterization and Local Coordinates

Many parameterization methods utilize a local 3D coordinate frame with its origin at

the vertex. The normal vector at the vertex is frequently chosen as one axis of this

frame. The vertex normal can be computed as the average of the face normals for

the faces adjacent to the vertex, with various weightings applied, or as the normal

to the plane that best fits the vertex and some number of nearby vertices. For

methods that fit a surface to the data near the vertex, the normal can be replaced

with the normal calculated from the surface fit. A local coordinate system is formed

by the normal vector and two arbitrary orthogonal axes in a plane perpendicular to

this vector. Transforming to such a local coordinate system does not restrict the

curvature calculation, but does simplify the solution of the equations defining the

surface representation.

One class of fitting methods represents the surface as a function of two parametric

variables u and v in the form:

F (u, v) = (x(u, v), y(u, v), z(u, v))
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The simplest representation is a height function, also referred to as a Monge patch.

The height function is oriented relative to the local tangent plane, so that

F (u, v) = (u, v, f(u, v))

The parametric coordinates of the vertices are found by projecting the vertices onto

the tangent plane. This projection can cause distortion in the relative distances

between points, and the projection of complex regions can even cause folding. As an

alternative, a mapping is computed that transforms the vertices to the plane while

minimizing some measure of distortion. Several algorithms [54, 39, 156] have been

developed to generate such mappings for a mesh that better preserve relationships

and avoid folding.

Quadric Fitting

A popular choice for f(u, v) is a quadratic function. Various forms of quadratic

function have been fitted to range data [55, 1, 164, 113] and to mesh representa-

tions [69, 115, 168]. For a general second-order polynomial with six coefficients,

applied to a height function, the equation is:

zi = f(ui, vi) = Au2
i + Buivi + Cv2

i + Dui + Evi + F

where (ui, vi) is the parametric location of the ith point in the tangent plane, and

zi is the height of the point above (or below) the tangent plane. Here, i runs from

1 to N , where N is the number of vertices being fit. The coefficients A through F

are determined by solving a least-squares [139, 50] problem. Two factors distinguish

variations of this approach. First, the constant term, or the constant and linear terms,

can be dropped. Dropping the constant term forces the fit to go through the vertex,

while dropping the linear terms forces the normal to line up with the z axis of the local

reference frame. The second factor is the number of vertices to include in the least-

squares fit. One approach is to use just the vertices of the one-ring neighborhood.

Alternatively, the neighborhood can be expanded to include a specified number of

vertices in the least-squares fit. This larger number of vertices may be required based

on the number of coefficients or to improve the stability of the solution. Cazals and
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Pouget [24] extend fitting to differential quantities of arbitrary order, using higher

degree truncated Taylor expansions, called osculating jets.

Cubic Fitting with Normals

Goldfeather et al. [65] expand the quadric method by using a cubic fit of a system of

equations formed from the coordinates and normal vectors at vertices on the one-ring

neighborhood. Their focus is on calculation of principal curvature directions rather

than the curvature magnitudes.

Implicit Conic Functions

Implicit functions provide an alternative fitting method that does not require a pa-

rameterization of the surface. Conic surfaces, particularly ellipsoids, have been used

for surface fitting in applications such as medical imaging. Douros and Buxton [42]

extend this approach to a general conic:

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0

Fitting Variations

A variation of the quadric fitting method can be developed by providing an alternate

fitting function. In this variation of quadric fitting, the projection to the tangent

plane is replaced with a parameterization using the flattening algorithms of Desbrun

et al.[39] and Sheffer[157]. This parameterization is intended to reduce distortion,

and is less likely to produce folding. We evaluate such a parameterization where the

boundary of the flattened mesh is a natural outcome of the flatteneing process. In

the experimental results, this technique will be referred to as the natural parameteri-

zation, and will be compared to the planar parameterization based on a projection to

a reference plane. Replacing the quadratic equation fitting function with radial basis

functions was also explored. This variant used radial basis function with a uniformly

weighted Gaussian, which has well-behaved derivatives at the data points.
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3.2.2 Discrete Methods

One of the main motivations for discrete methods is to avoid the computational costs

associated with fitting algorithms. These methods do not involve solving a least

square problem and are very fast. However, many of these methods only provide

a subset of Gaussian, mean, and principal curvature directions (unlike a surface fit,

from which any of these data can be calculated). Table 3.2 lists several common

discrete curvature estimation methods.

Spherical Image

The spherical image method [115] uses the unit normals of the one-ring vertices,

translated to a common origin, to define a region of a unit sphere, and approximates

Gaussian curvature as the ratio of the spherical area to the one-ring area.

Angle Deficit

The angle deficit method [164, 115, 117], based on the Gauss-Bonnet theorem, ap-

proximates Gaussian curvature as 2π minus the sum of the angles for the faces at

a vertex, divided by an area associated with the vertex. Cohen-Steiner and Mor-

van [30] combine the angle deficit method with the integral absolute mean curvature

form (below) from the theory of normal cycles, and present a bound on the error for

a restricted Delaunay triangulation.

Angle Excess

The angle excess or turtle-walking method [164] is similar to the angle deficit method,

but approximates Gaussian curvature as 2π minus the total turning angle for a path

around a vertex divided by the area enclosed by the path. The path is taken as the

boundary of a one-ring neighborhood.



61

T
ab

le
3.

2:
C

u
rv

at
u
re

C
al

cu
la

ti
on

T
ax

on
om

y
-

D
is

cr
et

e
O

p
er

at
or

s

C
u
rv

at
u
re

C
al

cu
la

ti
on

T
ax

on
om

y
-
D

is
cr

et
e

O
pe

ra
to

rs
P

ri
n
c

C
rv

R
eq

T
y
p
e

P
ap

er
D

at
a

G
au

ss
M

ea
n

C
rv

D
ir

N
or

m
R
an

ge
im

ag
e

m
et

ho
ds

F
in

it
e

D
iff

.
M

cI
vo

r
&

V
al

ke
n
b
u
rg

(1
99

7)
N

x
N

X
X

X
S
rf

N
or

m
.

C
h
an

ge
F
ly

n
n

&
J
ai

n
(1

98
9)

N
x
N

X
X

X
C

ro
ss

P
at

ch
S
to

ke
ly

&
W

u
(1

99
2)

N
x
N

X
X

M
es

h
m

et
ho

ds
M

eu
sn

ie
r-

E
u
le

r
C

h
en

&
S
ch

m
it
t(

19
92

)
N

P
ai

rs
X

X
H

am
ei

ri
&

S
h
im

sh
on

i(
20

02
)

N
P

ts
X

X
A

n
gl

e
D

efi
ci

t
S
to

ke
ly

&
W

u
(1

99
2)

1-
R

in
g

X
M

ee
k

&
W

al
to

n
(2

00
0)

1-
R

in
g

X
M

ey
er

et
al

.(
20

02
)

1-
R

in
g

X
A

n
gl

e
E

x
ce

ss
S
to

ke
ly

&
W

u
(1

99
2)

1-
R

in
g

X
In

te
g.

A
b
s.

M
ea

n
D

y
n

et
al

.(
20

01
)

1-
R

in
g

X
N

or
m

.
C

rv
.

V
ec

.
M

ey
er

et
al

.(
20

02
)

1-
R

in
g

X
X

S
p
h
er

ic
al

Im
ag

e
M

ee
k

&
W

al
to

n
(2

00
0)

1-
R

in
g

X
X



62

Integral of Absolute Mean Curvature

Falcidieno and Spagnuolo [48] employ a reasoning approach to extract curvature in-

formation, including a discrete measure of mean curvature. This measure assigns a

measure of curvature to each edge as a function of the angle between the faces incident

on the edge, and then sums the contributions for each edge incident on a vertex to de-

termine the curvature at that vertex. They also convert the curvature to a curvature

density by dividing by an associated area based on Voronoi neighborhoods. Dyn et

al. [43] instead normalize this sum by the edge length divided by four times the area

associated with the vertex. This method is then paired with the angle deficit method

to use as a cost function when optimizing the triangulation of a cloud of points.

Meusnier and Euler Theorem

Chen and Schmitt [27] estimate normal curvature and principal curvature directions

by solving for the coefficients of the Dupin indicatrix [78] using three or more circular

fits through a vertex and two of its neighbors. A normal section is the intersection of

the surface with a plane containing the normal vector. Since there are many triples

of points that can be used to create circular fits, the ones forming curves closest to a

normal section are used. Hameiri and Shimshoni [70] use quadratic curves to estimate

the normal section between the vertex with its normal and neighboring vertices.

Curvature Normal Operator

Meyer et al. [117] compute mean curvature by using a summation to approximate the

integral of the Laplacian over the area associated with a vertex, and normalize by

this area. This area can be a mixture of Voronoi and Barycentric area, depending on

whether or not triangles are obtuse. They assume mild smoothness conditions and

incorporate local operators to denoise arbitrary meshes while preserving features.

The mean curvature is combined with Gaussian curvature computed using the angle

deficit method to derive principal curvatures, and a least-squares method is employed

to calculate principal directions.
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Derivative Calculation

Csakany and Wallace [36] use a simplified approach to compute the second derivatives

at a vertex of a mesh. They first compute the surface normal by averaging adjacent

face normals. The normal defines the first partial derivatives. A substitution scheme

is used to directly compute the second partial derivatives, which can be used to

estimate curvature. Their scheme is considered a simplification of an auto-correlation

method and a Hessian matrix method, and has been applied to both range images

and tessellated data.

Other

Tang and Medioni [172] compute the sign and direction of curvature, without fitting

or derivative calculation, using a voting scheme with weighting based on proximity.

Their technique does not provide a curvature magnitude estimate.

3.2.3 Estimating the Curvature Tensor

Curvature tensor estimation is similar to the discrete methods, except that instead

of estimating the curvature directly, a discrete estimation of the curvature tensor is

created, and the curvatures and principal directions are calculated from the curva-

ture tensor. These methods tend to have computational complexity lower than the

fitting methods, but slightly higher than the discrete methods. Table 3.3 lists several

curvature tensor estimation methods.

Integral Formulation

Taubin[173] proposes a method that estimates the tensor of curvature from the eigen-

values and eigenvectors of a 3× 3 matrix, which approximates an integral as a sum-

mation around a one-ring neighborhood. He also incorporates a smoothing step for

noisy meshes. A key benefit of his method is its simplicity, with the complexity being

linear in both time and space. Hamieri and Shimshoni [70] propose modifications
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of Taubin’s method by expanding to more points (primarily for range data), and

weighting based on distance rather than triangle area, while Surazhsky et al. [168]

proposed weighting based on angle. In the case of a general mesh, it is not clear

whether variation in distance or angle will dominate.

Per Face Tensor Calculation

A recent approach calculates the curvature tensor separately for each face [175, 145].

Given a face and the normal vectors at each vertex of the face, this curvature tensor

is well-defined. To get the curvature tensor at a vertex, the tensors for each face

adjacent to that vertex are averaged.

3.3 Evaluations

Previous studies do not provide an understanding of the differences between mesh

size, regularity, and noise issues. We develop a small number of tests that highlight

both the detailed behavior of curvature estimation methods and a statistical analysis

of errors.

Our detailed behavior test case defines mesh parameters that distinguish between

noise (perturbation normal to the surface) and triangulation effects (number, size, and

regularity of triangles). We track the error measures as we change parameter values.

For example, we can empirically determine if the estimated curvature converges to

the known value as the mesh cell size approaches zero. The detailed behavior test

case uses an idealized (extremely regular) mesh, except for specific mesh parameter

variations. This isolates the effect that specific mesh factors have on the curvature

estimation, and provides insight into how sensitive different methods are to these

factors.

The statistical analysis test case creates meshes containing vertices for a range of

valences, with both regular and irregular mesh regions, and analyzes the errors with
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respect to the properties of these meshes. In practice, all of the detailed mesh pa-

rameters are likely to vary in a mesh. The statistical analysis helps us determine how

the detailed behavior affects the overall behavior on a realistic mesh.

A suite of surface shapes, for which the exact curvature is known, is used to avoid

the bias of methods that may be optimal for one particular surface shape. These

tests illustrate the behavior of several of the curvature estimation methods discussed

above.

3.3.1 Curvature Estimation Test Cases

Test cases are constructed by first generating a mesh in the X−Y plane, and then pro-

jecting the mesh in the Z direction onto surfaces of different shapes, represented by the

following equations, as used previously by Hamann [69] and Cazals and Pouget [24]:

Sphere : x2 + y2 + z2 = 4

Cylinder : x2 + z2 = 4

Ellipsoid : (x/3)2 + (y/2)2 + (z/4)2 = 1

EllipticParaboloid : z = 2x2 + y2

Hyperboloid : z = 0.4(x2 − y2)

MonkeySaddle : z = 0.2(x3 − 3xy2)

CubicPolynomial : z = 0.15(x3 + 2x2y − xy + 2y2)

TrigonometricFunction : z = 0.1[cos(πx) + cos(πy)]

ExponentialFunction : z = 0.1e2x+y−y2

Figure 3.4 shows the mesh geometry for these shapes.
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Monkey
Saddle

Cubic
Polynomial

Trigonometric Exponential

Elliptic
Paraboloid

Sphere EllipsoidCylinder

Paraboloid Hyperboloid

Figure 3.4: Test case geometric shapes.
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Detailed Mesh Parameters

In order to create a mesh that represents our test surfaces, a planar triangular mesh is

projected onto the surface, centering the mesh at the target point. The target point

is the vertex at which we are calculating curvature, and is always the center point of

the mesh. The mesh is a regular N−ring neighborhood, where N ∈{1,2,3}. Sample

two-ring meshes are shown in Figure 3.3. The vertices are equally spaced along the

rings around the target vertex, except for variations of one of the seven parameters

that are used to control the qualities of the mesh:

• n, the number of vertices (valence) in the first (adjacent) ring, with the second

ring containing twice as many vertices,

• φ, the cell size (a relative distance from the target vertex to the first ring of

adjacent vertices, and between successive rings of vertices on the test surface),

• dRT , the displacement of the target vertex normal to the surface,

• dRA, the displacement of an adjacent vertex normal to the surface,

• dφT , the displacement of the target vertex along the surface toward an adjacent

vertex,

• dφA, the displacement of an adjacent vertex along the surface toward or away

from the target vertex, and

• dθ, the displacement of an adjacent vertex along the surface toward a neighbor-

ing adjacent vertex.

The normal displacements, dRT and dRA, represent noise, i.e., true deviation from

the actual surface geometry, and are applied after the mesh is projected to the sur-

face. This noise is synonymous with measurement error. dφT , dφA, and dθ represent

perturbations of the triangulation. Examples of perturbations normal to and along

the surface are shown in Figure 3.5. Moving the target point radially toward a point

on the first ring, or moving a point of the first ring radially or circumferentially along

the surface, reduces the regularity of the mesh.
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Noise Components Regularity Components

dRTdRA dФT

dθ

dФA

Figure 3.5: Detailed behavior test cases for a mesh projected onto a sphere. Left:
Noise component normal to the surface at the target vertex (dRT ) and at an

adjacent vertex (dRA). Center: Mesh regularity component based on moving the
target vertex away from center(dφT ). Right: Mesh regularity components based on

moving an adjacent vertex toward/away from the target (dφA) or moving the
adjacent vertex along the ring toward a neighboring adjacent vertex (dθ).

To consider different target points and mesh orientations on the surface, an offset and

rotation are added. This avoids bias that could occur from looking only at special

points, such as the points on the major and minor axes of an ellipsoid, or due to

alignment of the mesh with the coordinate axes. For several of the algorithms tested,

the accuracy at these special points was better than the accuracy of the method at a

generic point on the surface.

The exact curvatures, normals, and principal directions are computed when the mesh

is projected to the surface. For methods requiring surface normals, exact normals can

be used or approximate normal vectors can be calculated.

Statistical Analysis Case

For statistical analysis, a mesh containing 72 interior vertices (112 total) is created.

This mesh has valence ranging from three to ten, and contains both obtuse and non-

obtuse triangles. This mesh is again created in the X − Y plane and projected onto

one of our surface shapes. Figure 3.6 shows an example of the statistical analysis

mesh projected to the exponential surface. Statistics for curvature estimation can

be broken down by (a) valence, (b) the presence or absence of obtuse angles at the
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Statistical Analysis Test Case

b) Projected onto exponential surfacea) 2D mesh with valence 3 to 10

Figure 3.6: Statistical analysis test case. Left: The vertex layout in the X − Y
plane has valence ranging from three to ten (for interior vertices), and contains a

mixture of obtuse and non-obtuse triangles. Right: The mesh projected to an
exponential surface.

vertex, or (c) the sign of the actual curvature. This breakdown is used to determine

the impact of these three factors, and trends associated with the error in the curvature

estimation.

3.3.2 Experimental Results

The following sections present selected results for the three categories of curvature

estimation methods.

Curvature Estimation based On Fitting

Various mesh parameters are adjusted to determine their effect on the error in the

curvature estimate. The first factor considered is valence (i.e., the number of vertices

making up the one-ring neighborhood around the target vertex) and its impact on the

Gaussian curvature estimate. The asymptotic behavior of the error for each method

is plotted versus cell size, as the cell size decreases. This will be referred to as the

convergence of the method. Convergence will be considered to be good if the curve

approaches the exact curvature value as the cell size approaches zero.
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Fitting Methods on Paraboloid Surface
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Figure 3.7: Comparison of fitting methods applied to a paraboloid surface. A
valence of six was used for the data shown. The cubic fit with computed normals
does not converge to the exact curvature of 0.367. The one-ring and two-ring fits

behaved similarly, with the one-ring fits being a little more accurate than the
two-ring fits.

For one-ring neighborhoods with valences of three or four, the problem may be under-

constrained, depending on the number of coefficients in the particular equation being

fit. With enough vertices in the one-ring, or using multiple rings, the fitting methods

are relatively insensitive to the valence. The cubic fit based on vertex locations and

normals converges for all valences when using the exact surface normals, but has poor

convergence when using normals calculated as the weighted average of the adjacent

face normals.

As the cell size is decreased, corresponding to finer resolution, all of the fitting meth-

ods, except the cubic fit with calculated normals, converge to the correct value. Fig-

ure 3.7 illustrates the convergence for various fitting methods as a function of mesh

resolution on a paraboloid. The conic fit performs well for several surface shapes,

and as would be expected, is exact for the ellipsoid. However, the conic fit does not

perform as well for some other surface types such as the exponential surface.



72

Cylinder with Noise Effects
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Figure 3.8: Impact of noise normal to a cylindrical surface on the discrete and
fitting methods. A valence of six was used for the data shown. The discrete

methods and one-ring fitting methods exhibit extreme sensitivity to noise. The
cubic fit behaves as a two-ring method and, along with the two-ring quadric fitting

methods, shows the least sensitivity to noise.
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Figure 3.9: Impact of valence (n) on the accuracy of the angle deficit method,
applied to a cubic polynomial. Increasing Cell Size (φ) represents decreasing mesh
resolution. Only valence six converges to the actual Gaussian curvature (0.338).
This method is extremely inaccurate for a valence of three, probably due to the

effect of obtuse triangles.

The biggest factor distinguishing performance for the fitting methods is the effect of

noise in the direction normal to the surface, as shown in Figure 3.8. The quadric

and conic fitting methods based on one-ring neighborhoods are extremely sensitive

to this type of noise. The normals used with the cubic method effectively provide

information from a second ring, and this was the most accurate fitting method in this

situation. The fits based on two and three rings also performed well in the presence

of noise normal to the surface, with a three-ring fit having no clear advantage over

the two-ring fit. The Gaussian curvature estimates from the fitting methods were not

particularly sensitive to varying the vertex location along the surface.
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Mesh Regularity Effects
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Figure 3.10: Impact of moving the target vertex along the surface toward a one-ring
point (dφT ). The valence is six for all methods. The discrete methods and the cubic
fit with computed normals are very susceptible to this mesh quality issue, while the

other methods show little sensitivity.

Curvature Estimation Using Discrete Methods

The impact of valence is most pronounced for the angle deficit method, as shown in

Figure 3.9. This method converges to the exact value only for valence six. Note also

the distinction between point curvature, which represents our ground truth, and the

integral of curvature over a region, upon which the angle deficit method is based.

These methods will produce similar results if the curvature is relatively constant over

the integration area, but may vary significantly in areas of rapidly changing curvature.

There may be applications where one or the other type of curvature information is

preferred, and this may lead to a different choice of methods. However, these valence

plots show significant variations for essentially the same curvature region.

Like the one-ring fitting methods, the discrete curvature estimation methods [117]

suffer from severe sensitivity to noise normal to the surface, as shown in Figure 3.8.

But they are also very sensitive to perturbations of the mesh vertices along the surface,
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as compared to the fitting methods, as shown in Figure 3.10. This is likely caused by

the reliance on angles and areas of the mesh faces, which do not enter directly into

the fitting methods.

Curvature Tensor Results

Figure 3.11 illustrates Taubin’s integral eigenvalue method [173] and Hameiri and

Shimshoni’s [70] modification of it on a sphere, calculated on a mesh centered at the

origin, and on a mesh offset from the origin. Both meshes are projected in the Z

direction to the same surface. Both methods match the exact curvature of the sphere

for the mesh centered at the origin, but are less accurate for the offset mesh. The

main difference is that the projection of the offset mesh is not normal to the sphere,

which degrades the mesh regularity. This effect is confirmed in Figure 3.12, where

starting with a regular mesh, one of the adjacent points is moved along the surface,

generating larger error with both methods. For the movement toward or away from

the target vertex, the modified method performs better, but the modified method is

more sensitive to movement around the ring, as shown in Figure 3.13. Being based

on a one-ring neighborhood, they still suffer from severe sensitivity to noise normal

to the surface.

Statistical Analysis Results

Results from the statistical analysis test case were generated for several surface shapes.

They confirmed that the variations for some methods were very dependent on the

type of surface. Overall, considering both Gaussian and mean curvature, the five

most accurate methods were:

1. The cubic fit with exact normals,

2. The two-ring quadric planar fit,

3. The two-ring conic fit,

4. The two-ring quadric natural fit, and
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5. The cubic fit with calculated normals,

The other methods had consistently larger error. The cubic fit using exact surface

normals was best, with the two-ring fits (planar, natural, and conic) having similar

errors. However, the two-ring conic fit and the cubic fit using calculated normals

had much larger standard deviation than the other top methods. The cubic fit with

exact normals and the planar and natural two-ring fitting methods were also most

consistent across differences in valence, triangle shape, and curvature sign. This shows

that just looking at the overall errors can be deceptive, and mask deficiencies that are

only uncovered by more detailed statistical analysis, or through the use of the specific

noise analysis test cases. Results for the Gaussian and mean curvature calculations

were similar. Mean curvature tends to be better behaved since it is an average rather

than the product of the principal curvatures.

In order to place bounds on the accuracy of curvature estimates, it would be useful if

methods could be identified that consistently over- or under-predict curvature mag-

nitudes. In our evaluation, the cubic fit with calculated normals under-predicted the

curvature magnitudes in most cases, and the two-ring conic fit predictions were larger

(more positive or less negative) than the actual Gaussian curvature. However, as dis-

cussed above, these methods had other problems that limit the application of these

trends. The cubic fit using exact normals and the two-ring quadric fitting methods

had smaller error magnitudes, but the sign of the error did not exhibit a consistent

trend across the set of test shapes.

3.3.3 Discussion of Results

The accuracy for the conic fitting method was very dependent on the type of surface

being fit. This points to the importance of comparing methods for more than one

type of surface. If an evaluation case is based on the same equation as the fitting

method, the results of the evaluation will not necessarily reflect performance for other

surfaces to which the method will be applied.

The accuracy of fitting methods and the angle deficit method have been demonstrated

in previous studies, as mentioned in Section 2. Our analysis confirms the benefits of
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Figure 3.11: Integral Eigenvalue method applied to a sphere as a function of cell
size. A valence of six is used for the data shown. The methods match well for a

regular mesh centered at the origin, but degrade due to the minor distortion from
projection of an offset mesh.

fitting methods, but identifies deficiencies in the angle deficit method, and conic

fitting methods. Even without noise, the statistical analysis indicates that the two-

ring fitting is superior to the one-ring fitting methods. The detailed behavior suggests

that noise normal to the surface severely degrades the one-ring methods, which have

higher noise sensitivity.

The cubic fit appears promising, but the sensitivity to the calculation of the normals

is a severe drawback. The principal curvature direction calculations appeared more

stable and less sensitive to mesh regularity than the curvature magnitudes. See

Goldfeather[65] for further discussion comparing calculation of principal directions.

The discrete curvature methods are appealing because of their speed. Fitting is by its

nature a more expensive computation. However, the sensitivity to valence, noise, and

mesh regularity limit the usefulness of the discrete curvature estimates to very regular

meshes for which either noise is absent or smoothing has been applied. The authors

of these methods have proposed applying smoothing algorithms for cases with noise.

But smoothing can also mask surface detail if not applied judiciously.
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Figure 3.12: Effect of perturbation of an adjacent vertex along the surface toward or
away from the target vertex. Both variation of the Integral Eigenvalue method show
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Figure 3.13: Perturbation introducing non-uniform spacing around the ring. Again,
both methods exhibit sensitivity to this mesh regularity parameter.
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The fitting methods based on two or more rings have better overall performance, albeit

at a greater computational cost. In our tests, accuracies for three ring neighborhoods

did not warrant the increased cost due to the size of the fitting problem, so a surface

fit based on a two ring neighborhood is recommended.

Conic fitting is usually phrased as a least-squares solution that minimizes F (x, y, z)2.

Scaling the conic equation by a constant value does not change the zero set, but it

does change the value of F (x, y, z). For this reason, fitting is generally more stable

if the points are first transformed to a local coordinate system centered around the

origin, with the normal pointing in the y direction.

Fitting using radial basis functions did not yield suitable curvature estimates. How-

ever, there are a variety of possible formulations that may be worth investigating.

Generating the parametric coordinates used for fitting by projecting to the tangent

plane is very fast. Alternatively, generating parametric coordinates based on a flat-

tening [39] of the local mesh avoids potential problems that can occur due to folding

or distortion when the mesh is projected to a plane. These techniques require more

work and do not provide much accuracy improvement. The behavior for a two-ring

fit parameterized by a natural flattening technique was similar to the two-ring planar

fit. For smooth meshes, the projection of a two-ring neighborhood is not likely to

fold, but the overhead of the flattening technique may be worthwhile for meshes with

sharper features.

These results demonstrate the value of our analysis methods to uncover the detailed

behavior of curvature calculation methods on triangular meshes, and an approach to

statistical analysis that can provide practical assessment of new or existing methods.

It is important to recognize that looking at surfaces colored by the calculated cur-

vature values is not very useful for comparing methods. Noise, shape details of the

surface, and the surface triangulation affect the accuracy of the curvature estimate

and these effects are hard to detect by curvature visualization.
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Close-up viewSurface mesh

Figure 3.14: Goldfeather’s general surface test case. Left: Overall mesh. Right:
Expanded view of local mesh.

Figure 3.15: Surface plot of exact Gaussian curvature for Grimm’s general surface
test case with complex curvature.
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3.3.4 Extension to General Surfaces

How do the results above, derived from analyses of specific behavior for vertices with

positive and negative Gaussian curvature, apply to general surfaces? These methods

are applied to a torus (with meshes having three different levels of resolution) and to

two general surface test cases. All three meshes for the torus represent very regular

triangulations. The first general surface test case, supplied by Goldfeather [64], is

shown in Figure 3.14, and contains a range of valences, angles, and edge lengths,

with 56.8% of the triangles being obtuse. An example of the irregularity of this mesh

is shown in the close-up view on the right. Figure 3.15 shows the second general

surface test case, which was built from rational polynomials [59]. The Gaussian

curvature ranges from -25 to 63. The mesh tessellation is very regular (squares split

into triangles) for this test case.

For the torus, although the overall mean error is lower for cubic fitting with normals,

the standard deviation is much larger. This is due to the much larger mean error for

the positive and negative Gaussian curvature vertices. The cubic fitting with normals

method estimates positive curvature regions as more positive and negative curvature

regions as more negative. The discrete angle deficit and curvature normal opera-

tor method also estimates positive curvature regions as more positive, but estimate

negative curvature regions as less negative. The fit with normals method has about

the same magnitude mean error for positive and negative regions, but the standard

deviation is much larger for negative curvature regions. The discrete operator error

is about a factor of eight to ten lower than the fit with normals method for positive

curvature regions, but only about three to four times lower for negative curvature

regions. The cubic fit with normals method using computed normals is only slightly

worse than the cubic fit with normals method using exact normals, probably due to

the high quality of the mesh.

For the first general surface test case, the fit with normals method using exact nor-

mals has better mean and standard deviation for negative curvature regions than for

positive curvature regions. When using computed normals, the mean and standard

deviations are comparable for positive and negative curvature regions, with the mean

error slightly larger for positive curvature regions, and the standard deviation slightly

larger for negative curvature regions. The discrete operator method has bigger mean
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error for negative curvature regions, and slightly bigger standard deviation for pos-

itive curvature regions. But the bottom line is that the cubic fitting with normals

method using exact normals performs well, with the other three methods doing much

worse. Of these, the discrete angle deficit and curvature normal operator methods

have lower mean error, but somewhat larger standard deviation.

For the second general surface test case, the discrete operator, polynomial, radial basis

functions, integral formulation of the curvature tensor, and conic methods exhibit the

same relative behavior as they did on the torus, although the maximum error is higher.

The cubic fitting with normals, using exact or computed normals, exhibited excessive

curvature (> 1000) for a small number of points.

3.4 Chapter Summary

This chapter has described a suite of test cases that model mesh variations to assess

the impact of mesh resolution, regularity, valence, and noise on the accuracy of cur-

vature calculation algorithms for triangular meshes. In addition to fundamental mesh

issues, this suite includes statistical analysis that also addresses different aspects of

curvature estimation error. Along with a summary of existing curvature estimation

methods, evaluation results for the most common surface fitting and discrete methods

have been generated to produce guidelines for choosing an algorithm. Using the be-

havior of curvature estimation methods to place bounds on the error in the curvature

estimates based on mesh resolution and other factors is an area for further research.

We use surface curvature in developing our shape representation and similarity analy-

sis described in the next chapter. Due to the potential for noise in the surface meshes

we are using, we choose a fitting technique based on a two-ring neighborhood. We

employ the natural parameterization based on flattening to avoid the possibility of

folding. So the curvatures used in the remainder of this dissertation are calculated

using a quadric fit on a natural parameterization of the two-ring neighborhood.
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Chapter 4

Curvature Map Similarity Measure

This chapter addresses the problem of local shape similarity, i.e., is a region of a

surface the same “shape” as another region? Similarity information is useful for

several tasks in our shape matching process. For example, identifying corresponding

regions of two surfaces, based on the similarity of the regions, is a necessary first

step toward alignment and registration of those surfaces. Similarity is also used to

identify corresponding points and to evaluate the final similarity of objects based on

their corresponding points.

There are several goals for a shape similarity measure. The priority for these goals is

dependent on the intended use. For detailed shape matching, the similarity measure

needs to be capable of discriminating between fine shape variations. To compare

subtle shape differences, it must be relatively insensitive to noise, for example, due

to measurement tolerances. A coarse similarity measure may be used to rapidly

identify significantly dissimilar points, with a higher fidelity, but likely slower, method

applied only to points that pass some initial similarity threshold. Since objects may

be sampled very differently, the shape similarity measure should also be independent

of the point distribution on the object’s mesh representation.

Many previous approaches to shape similarity have focused on object recognition.

For efficiency, these methods try to match objects using a minimal number of key

points or with a single shape signature. Because objects of different classes are not

very similar, coarse methods are often adequate.

Point-based similarity measures, such as Hausdorff distance [79], multi-resolution

Reeb graphs [74], shape distributions [130], and spin images [84], can be sensitive to



84

Vertex B

Curvature map curves

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25 30

Distance r

C
ur

va
tu

re
Vertex A - Gaussian
Vertex A - Mean
Vertex B - Gaussian
Vertex B - Mean

Vertex A

Figure 4.1: Conceptual view of a 1-D curvature map. The curves on the left
represent mean and a Gaussian curvature functions for two sample vertices, A and
B. The distance can be considered as expanding concentric rings (first five rings
shown on the right), with the curvature value found by averaging the curvature

values in the associated ring.

the distribution of points on the surface of the object. Many point-based methods

are also global in nature, so that shape changes anywhere on the object can effect the

signature. The statistical sampling of shape contexts [119, 92, 57] adds uncertainty

beyond the point distribution sensitivity and global nature.

Local methods, such as local feature histograms [72] and distance and angle descrip-

tors [135] work well for coarse matching, but are less suitable for fine matching of

similar shapes. The point fingerprint [167] does represent local shapes, but is limited

to ‘interesting’ points.

Geodesic fans [186] can provide even more local information about the shape in the

region around a point. Like the point fingerprint, geodesic fans can also carry other

information such as curvature.

The curvature map builds on the geodesic fan construct. We start with a basic

geodesic fan, but use both mean and Gaussian curvature as signals. Because curvature

is a point metric, it does not provide information about the region around the point.
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However, the curvature values at the geodesic fan points create a local 2-D curvature

map. A dimensionality reduction to 1-D increases efficiency for coarse matching. The

basic concept for the 1-D curvature map is illustrated in Figure 4.1. An alternate

formulation generates the 1-D map directly from the object’s mesh without resampling

at the geodesic fan points. Curvature maps can be generated at any point on the

mesh. Note that using just the curvature at a point is the 0-D form of the curvature

map function.

This chapter develops the curvature map and comparison functions for local shape

similarity. In Section 4.1, we investigate various methods for building curvature maps

from both mean and Gaussian curvature, and the effect of the size of the region. We

then define a similarity function that compares two curvature maps in Section 4.2.

Curvature maps are robust with respect to grid resolution and mesh regularity. Both

the 1-D and 2-D comparison functions yield a high degree of discrimination for local

shapes, compared to the 0-D (point curvature) methods which have been used pre-

viously. Curvature calculation on discrete meshes is often noisy [71] and not always

accurate [60]. Because curvature maps combine curvature information over a region,

they are less susceptible to these issues.

4.1 Defining Local Surface Shape

This section describes the construction of the curvature map, and how it is used

to identify regions of similar shape. Two methods are defined for creating samples

around the point, one based on the mesh topology (Section 4.1.1) and one based on

geodesic sampling (Section 4.1.2). Next, we describe how curvature is calculated on

the mesh. Finally, we define the function for evaluating shape similarity.

4.1.1 Defining Rings of a Mesh

Given a specified vertex of the mesh, a set of “rings” around the vertex is defined

using the existing mesh structure. The ith ring around vertex v0 is defined as the
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set of vertices v ∈ V such that there exists a shortest path from v0 to v containing i

edges. The set of rings Ri, i ≤ N defines the N -ring neighborhood about v0.

Figure 4.2 shows the first nine rings around a selected vertex of the mesh. The ring

structure can be extended an arbitrary distance from any point; however, as the

distance increases, the shape of the ring may become irregular.

4.1.2 Geodesic Fans

Geodesic fans [186] represent a local surface resampling that provides a uniform neigh-

borhood structure around a vertex. In particular, a geodesic fan consists of a set of

spokes, and a set of samples on each spoke. The spokes are geodesics marched out

across the surface from the neighborhood center, equally spaced in the conformal

plane of the neighborhood’s 1-ring. With the samples equally spaced along each

spoke, they form a local geodesic polar map around the vertex. Each set of points

equi-distant from the neighborhood center is treated as a ring. Following Zelinka

and Garland [186], we use interpolated normal geodesics [15] where possible, revert-

ing to straightest geodesics [137] if the smoothness criterion for interpolated normal

geodesics is not met.

We use this procedure to generate fans at each vertex of the mesh. Sample fans

at two vertices are shown in Figure 4.3. Each fan point is defined in terms of the

Barycentric coordinates in some triangular face in the original mesh. These Barycen-

tric coordinates are used to interpolate curvature values defined on the mesh to the

fan point. This forms a uniform sampling of curvature data around each vertex. As

the sampling increases, more overhead is required to store the fan data.

The regularity of geodesic fans can break down as the distance from the point in-

creases, due to a) stretching of the circumferential spacing while the radial spacing

remains uniform, and b) issues in constructing geodesics over longer distances. As a

result, the fan resolution may be locally finer, coarser, or both, when compared to

the mesh resolution. If the sampling is coarser than the mesh triangle size, then the

geodesic fan will not incorporate all of the curvature data available.
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Color coding for 
the first 9 rings 
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Figure 4.2: Test surface with vertices A and B highlighted. The first nine rings
defined around vertex A are color coded. The mesh is fairly uniform except for

blending between sections. Note that the ring structure is still well-defined in spite
of the skewness near its right edge.
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Geodesic fans for vertices A and B
(20 spokes, 11 points per spoke)

Vertex A

Vertex B

Figure 4.3: Geodesic fans at two vertices. The first spoke of each fan is highlighted
and used to track the relative orientation for 2-D fan comparisons. Fan parameters

include the number and length of spokes, and the number of points per spoke.
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Figure 4.4: Gaussian curvature (left) and mean curvature (right). Note that the
Gaussian curvature ranges over [−4, 6], while the mean curvature ranges over

[−1.5, 1.5].

4.1.3 Estimating Curvature

Based on the evaluation of curvature estimation methods for triangular meshes in

Chapter 3, we calculate curvature by fitting a 2-ring neighborhood using a natural

parameterization of the input mesh [39]. This method is reasonably robust with

respect to noise as well as mesh irregularity, and provides consistent accuracy of

the curvature values. Gaussian curvature and mean curvature are plotted as scalar

properties on the surface of the test shape in Figure 4.4.

4.1.4 1-D Curvature Maps

The 1-D form of the curvature map is defined over M rings, where the rings come

from either the mesh structure or the geodesic fan structure. Each point pi in the

map is constructed from data accumulated along the ring Ri. The point pi can have

one or more data values; this allows us to compare, for example, both the Gaussian
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Figure 4.5: Maps of Gaussian curvature and mean curvature as a function of
distance from the point. Peaks and valleys tend to be more pronounced for the

Gaussian curvature curve, which is the product of the principal curvatures
(κg = κ1κ2), compared to the mean curvature, which is an average (κm = κ1+κ2

2
).
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and the mean curvature simultaneously (see Figure 4.5). Each element of pi generates

a curve as a function of the ring distance 1.

Because the Gaussian curvature is a product of the principal curvatures and the

mean curvature is an average, the Gaussian curvature magnitudes will be roughly

proportional to the square of the mean curvatures. A square root function applied to

the Gaussian curvatures gives a more equal weighting. Similarly, we use a logarithmic

function to reduce the effect of large variations in the peak curvature values, which

tend to dominate over areas with lower curvature magnitudes. The emphasis here is

to match the shape of curves rather than just the magnitude of the peaks.

More formally, the curvature map κmap at a vertex v is a set of N piecewise linear

functions defined over the rings Ri:

κmap = {f j : ri → <}0<j<N , 0 < i < M (4.1)

ri =
√

Ai/π (4.2)

g(κ) =


1

Ni

∑
w∈Ri

κ(w) or

maxw∈Ri
κ(w) or

minw∈Ri
κ(w)

(4.3)

h1(x) =

 x or

sign(x) sqrt‖x‖
(4.4)

h2(x) =

 x or

sign(x) log (1 + ‖x‖)
(4.5)

f j(κ) = h2 ◦ h1 ◦ g(κ) (4.6)

where Ai the area of the i-ring neighborhood. The functions f j can be applied to

Gaussian κg or mean κm curvature. ri is used to normalize the parameterization of

the f j curves with respect to the area covered by the region.

1The curvature map is formulated for a discrete mesh, but the same concept can be applied to an
analytic surface, where the curve values for discrete increments would be replaced by a continuous
function on the surface.
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Figure 4.6: Map of Gaussian (left) and mean (right) curvature as a function of
distance from the selected vertex. The ring-based and fan-based curves for a

particular point start out at the same value and initially have similar shape, but
diverge due to a) non-uniformity of the rings, and b) fans sampling only a subset of

the data, as the distance from the center increases. In this case, the fans cover a
smaller area than the rings.

To compare the shape at two points, such as those shown in Figure 4.2, we compare

the corresponding curvature map functions (see Figure 4.6). The shape similarity,

S1 is a function of the difference between the individual curves. Let fA be the set of

curves for one point, and fB the curves for the second point.

S1 =
∑
j

∫ R

0

(
‖(f j)A(r)− (f j)B(r)‖

)
dr (4.7)

Note that the difference we compute is actually a dissimilarity measure, with zero

indicating high similarity and positive values indicating the relative difference between

shapes. The user can also specify the radial distance over which the curvature maps

are compared. This provides a parameter to control the size of the region used to

compute similarity between points.
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4.1.5 2-D Curvature Maps

The 2-D curvature map is similar to the 1-D map, except that we maintain the angular

(θk) information and accumulate data only along a single spoke (i.e., there is one f j

per spoke). Let Ns be the number of spokes:

κmap = {(f j
k)}0<j<N,0<k<Ns)} (4.8)

The comparison metric sums up the curve differences along each spoke. There are Ns

possible alignments between two fans; we calculate S2 for each alignment and choose

the smallest value.

S2 =
∑
j

∑
k

∫ R

0

(
‖(f j

k)A(r)− (f j
k)B(r)‖

)
dr (4.9)

It is important that the fans are generated with the same number of spokes. By

checking all possible relative orientations of the fans, the 2-D form can also provide

information about the relative orientation of the points. As with the 1-D curvature

map, the user can choose the size of the region to compare over by selecting R.

4.2 Shape Similarity Evaluations

Figure 4.7 shows points A, B, and C on two Ulna samples. Points A and B are similar

to each other and dissimilar with respect to Point C. This example gives an intuitive

sense that the similarity measure does the right thing.

Next, to evaluate our metrics we created a test shape with known curvature properties

(see Figure 4.8). Because this manifold surface is defined parametrically, we can

easily generate a range of cases for testing that cover curvatures found in realistic
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Figure 4.7: Similarity for points on two Ulna samples. Point A and B are similar,
and Point C differs from Points A and B.

applications. We also applied the curvature map to standard meshes such as the

Stanford Bunny mesh.

We first look at the discrimination power of the 0,1, and 2-D curvature maps, using

the “best” f j functions for each case. Next, we describe our study to determine which

f j functions have the best discrimination power. Finally, we look at evaluation times

for each of the techniques.

4.2.1 Comparing 0-,1-, and 2-D Curvature Maps

We compare the 0-, 1-, and 2-D curvature maps for our three-lobed test shape and the

bunny. The top (Vertex A) and bottom (Vertex B) rows of images in Figure 4.9 show

which points on the surface are most similar to the selected vertex. For all of these

images, we apply the square root and logarithmic functions to the average Gaussian

curvature, and the logarithmic function to the average of the mean curvature. As
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Three-Lobed Manifold Test Surface

Front View Back View

Figure 4.8: Two views of the test surface used for shape comparison. The left and
right lobes in the front view are the same except for the addition of a dent (concave

region) in the end of the left lobe.

expected, the number of similar points decreases as we increase the dimension of the

curvature map.

The ring and fan-based 1-D methods are similar in discriminatory power, but differ

slightly in which points they mark as similar. Small differences may be due to dif-

ferences in the size and shape of the regions covered by the rings and fans. We also

varied the size of the region covered by the fans, keeping the same number of spokes

and number of points along each spoke. The results remained similar as long as we

adjusted the number of rings to match the approximate region sizes.

Choice of Comparison Functions

The visualization of similarity as a scalar function plotted on the surface of the object

gives an indication of the improved ability to differentiate based on shape, but is not

as useful in determining which of our 1-D curvature map functions, and associated

comparison functions works best. To test these options, we identify groups of points

that we expect to be similar, based on our intuition. The similarity for each pair of

points is used to form a distance grid. Distance grids for 0-D, 1-D ring-based, 1-D
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Figure 4.9: Top: Similarity measure relative to vertex A plotted on the test surface.
Bottom: vertex B. The color scale ranges from blue (high similarity to the selected

point) to magenta (most dissimilar). Nine rings were used in the ring-based
calculation. 20 spokes, 11 samples per spoke, were used in the 1- and 2-D fan-based

calculation; the surface area is approximately the same as the ring version. Note
that the 0-D measure (far left) is very noisy compared to the 1-D ring-based (center
left) and fan-based (center right) measures. The 2-D measure (far right) shows few

points with similarity to the selected vertex.
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Figure 4.10: Similarity measure relative to a vertex on the tip of the ear of the
Stanford Bunny. The color scale ranges from blue (high similarity to the selected

point) to magenta (most dissimilar). The 0-D similarity has significant noise, while
the 1-D methods isolates the tips of the ears much more cleanly. The 2-D method is

even more discriminating, with similarity limited to the tip of the other ear.

Bull Mesh SimilaritySelected Vertex

Ring Structure (9 rings) 1-D Ring-Based (5 rings) 1-D Fan-Based (11 pts)

Figure 4.11: Similarity measure for the Bull mesh. The color scale ranges from blue
(high similarity to the selected point) to magenta (most dissimilar). The view on
the left shows that the ring structure is very non-symmetric about the selected
vertex, due to the irregularity of the bull mesh. Even so, the ring-based and

fan-based 1-D methods provide comparable similarity measures.
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fan-based, and 2-D methods are shown in Figure 4.12. We chose eight groups on our

three-lobed test surface, where each group contains three vertices. Group A is located

in the concave region of one lobe. Groups B, C, and D are in three saddle regions

occurring between pairs of lobes. Group E is in the crease along the rounded back of

the main body. Groups F, G, and H are on convex regions of the body and two lobes

respectively.

Comparing the distance grids allows us to evaluate various combinations of compar-

ison functions. The comparison function having the most similarity between points

of the same group (darkest 3× 3 boxes along the diagonal), with much less similarity

(lighter) for dissimilar groups, was deemed best. The first five groups include concave

regions, while the last three are primarily convex, so similarity between certain groups

is expected.

Average mean curvature with the square root function applied to the average Gaussian

curvature gave the best discrimination in our tests. The logarithmic function has a

less significant effect, but this importance may depend on the nature of the curvature

peaks. We varied the number of rings over a wide range, but for our test case, there

was little change after about eight rings. Using fewer rings caused more degradation

as we approach the 0-D curvature map. Using the minimum curvature or maximum

curvature, instead of the average over the ring, performed poorly. Using a vector of

both the minimum and maximum curvature in a ring did much better, but was not

quite as effective as the average.

The 1-D ring-based method generates the highest degree of self-similarity within the

groups. The 1-D fan-based method does not do quite as well within groups, but is

good at distinguishing between the groups. The 0-D method does not differentiate

between Groups A and B, and has poor self-similarity for Groups C through E. All

three methods have just subtle differences for the last three groups. Overall, the

ring-based 1-D method most consistently indicates more similarity within the group

than between groups.
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A B C D E F G H

0-D Measure 1-D Ring-Based Measure (8 rings)

Test Surface Similarity Comparisons for Vertex Groups (3 Vertices per Group)

1-D Fan-Based Measure (11 points)

Group A – Concave region at end of a lobe
Group B, C, D – Saddle regions between 
pairs of lobes

Group E – Crease along edge of rounded back
Group F, G, H – Convex regions of the back 
and two lobes

2-D Fan-Based Measure (11 points)
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Figure 4.12: Distance grids for select points. The similarity within groups, indicated
by the darkest 3× 3 boxes along the diagonal, and dissimilarity between groups,
based on lighter off-diagonal squares, was most consistent for the 1-D ring-based

measure.
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4.2.2 Applying Curvature Maps to Other Objects

To test how our new similarity measure works in practice, we apply it to a mesh of

the Stanford Bunny. The bunny has a much more irregular surface, with regions of

similar curvature, but quite a bit of local curvature variation. As Figure 4.10 (far left)

shows, the 0-D (point curvature) similarity is very noisy due to these local curvature

variations. The 1-D ring-based similarity measure (second from left) was generated

from Gaussian curvature with log and square root functions and mean curvature

with a log function applied, compared over eight rings. The same functions applied

to the 1-D similarity based on eleven fan points and 2-D similarity are shown in the

second from the right and far right images of Figure 4.10 respectively. The results

are consistent with our test surface, i.e., the 0-D method is extremely noisy, both 1-D

methods identify much smaller and more consistent regions of similarity. The 2-D

method has even more differentiation between ear tip points and points not on the

ear tip, with similarity indicated only for the tip of the other ear.

We also apply curvature maps to the mesh of a bull. This mesh is highly irregular,

causing the ring structure to be asymmetric about the selected vertex, as shown in

Figure 4.11. However, the ring-based and fan-based 1-D methods still provide similar

results.

4.2.3 Efficiency Comparison

We also made comparisons of the speed of the methods for the test shape and the

bunny mesh. Table 4.1 contains pre-processing times for computing curvature on the

mesh, creating a ring-based curvature map, and creating a fan-based curvature map.

All times are per mesh vertex. Identifying the ring structure around each vertex

is included in the ring-based map times, and fan generation time is added to the

map creation time for the fan-based maps. Table 4.2 shows the times for computing

the similarity of each point of the mesh relative to a selected point, normalized by

the number of vertices. The 1-D and 2-D methods were timed for four, eight, and

eleven rings/points. All times were computed on a 1.7 GHz Pentium M processor.

Some inaccuracy in the smaller times for the test shape is due to approaching the
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Table 4.1: Preprocessing Times (milliseconds per Vertex) for 1.7 GHz Pentium M
Processor

Preprocessing Times - msec/vertex
Test Shape Bunny

Compute Curvature 1.5 1.6
Ring-based Map 1.8 30.0
Fan-based Map 3.4 to 10.4† 5.2 to 26.1†
† Time is proportional to the physical length of fan spokes

Table 4.2: Comparison Times (microseconds per Vertex) for 1.7 GHz Pentium M
Processor

Comparison Times - µsec/vertex
Comparison Method Test Shape Bunny
0-D (Point curvature) 2.9 1.1
1-D Ring-based Map (4 pts) 6.4 4.6
1-D Ring-based Map (8 pts) 10.1 8.6
1-D Ring-based Map (11 pts) 12.1 12.1
1-D Fan-based Map (4 pts) 7.5 4.4
1-D Fan-based Map (8 pts) 11.0 8.5
1-D Fan-based Map (11 pts) 12.4 11.5
2-D Map (4 pts) 672 671
2-D Map (8 pts) 1283 1287
2-D Map (11 pts) 1584 1597

resolution of our timing algorithm. The comparison functions are much faster than

the pre-processing step, with the 0-D and 1-D methods a few orders of magnitude

faster than the 2-D comparisons.

4.2.4 Finding Unique Features with Curvature Maps

In order to look for key features in the mesh, we look for the groups of points that are

least similar to the remaining points. For each point, we compute its similarity with

respect to all other points, and then sort these by decreasing similarity. A Gaussian
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Figure 4.13: The similarity curves for the most and least similar vertices.

function is applied to the sorted similarity curves, and the resulting contribution,

which represents a non-parametric kernel density estimate, quantifies how many other

points the given point is similar to. The smallest values indicate the points most

different from the general population. The sorted similarity curves for the highest

and lowest similarity density are shown in Figure 4.13 (the kernel value was set to

be 0.05 at the 100th point). The three-hundred most unique points are highlighted

for the 0-D (left) and 1-D (right) methods in Figure 4.14. The 1-D method picks up

more consistent point groupings than the 0-D method. This is apparent in both the

neck region and on the tail.

4.2.5 Guidelines for Computing Similarity

The ring-based and fan-based 1-D methods are comparable in ability to discriminate,

comparison times, and setup times. Ring-based methods are more appropriate for

larger regions, provided the mesh is fairly uniform. If storage space is not an issue,
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0-D similarity 1-D similarity (5 rings)

Bull mesh 
most unique points

Figure 4.14: The three-hundred most unique points based on similarity to to all
other points. The 0-D method (left) picks up most of the peak curvatures, but finds
a lot of isolated points in the neck and face region. The 1-D method (right) finds

consistent groups of points reflecting key features in the mesh.
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the fan-based 1-D method provides a more consistent comparison for smaller local

regions.

The 1-D ring-based method can also be used to pre-process a mesh to identify regions

that are similar. The more expensive, but more exact, 2-D method can then be applied

just to these regions.

In summary, it is preferable to use the ring-based 1-D method for comparing larger

local regions, as long as the mesh quality is reasonable. The slower 2-D methods can

be reserved for the final stage when exact matching is required.

4.3 Chapter Summary

The curvature map is a new method for comparing local shape based on surface

curvature. It has been applied as a 1-D method on N-ring neighborhoods and as

a 1-D or 2-D method on Geodesic fans. Point curvature (0-D) methods do a poor

job of distinguishing between local regions. Curvature maps demonstrate improved

capability to discriminate shape as compared to these 0-D methods.

The radius to use when generating the curvature map is case dependent, but a general

guideline is to use a radius slightly larger (ten to twenty percent) than the largest

expected feature size. Similarity can still be evaluated for any size up to this radius.

The only drawback due to using a larger radius is an increase in the required storage

and computation time. Determining the size over which to compare similarity is still

an open issue, but a multi-scale approach, such as the one described in the next

chapter, is one way to overcome this issue.

Curvature maps offer a valuable capability to differentiate local shapes. These meth-

ods will be applied to the shape matching problem to identify corresponding points

based on shape similarity. These comparison methods could also be extended to

account for shape similarity when objects or portions of objects are scaled differently.
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Chapter 5

Feature Detection Using

Multi-Scale Graph Cuts

Previous object matching approaches often have required some type of user interac-

tion to select features [183]. Manual selection of corresponding features and subjective

determination of the difference between objects are time consuming processes requir-

ing a high level of expertise. As advances in 3-D scanning capability increase access to

3-D shape data, automatic detection of features is necessary to analyze and compare

shapes effectively. But this brings us to two problems. The first is the fundamental

question: ‘What constitutes a feature?’ Once that question is answered, the next

question is ‘How do we detect features automatically?’

Man-made objects often have well-defined features such as edges, but features of

natural shapes, such as the wrist bones shown in Figure 5.1, are more subjective.

Such shapes can have subtle variations, the importance of which may not be obvious.

We expect peaks, pits, ridges, and valleys to be useful features for shape matching

applications. Furthermore, important features may be of various sizes within one

object. These features may or may not be unique, as long as there are enough

features to resolve any ambiguities during shape matching.

Our goal is to detect subtle shape features in a robust way with a fully automated

process. In our shape matching process we match regions, and then determine se-

lected points within the matched regions for point-to-point matching. Therefore,

the desired output is a set of geometrically interesting regions that are sufficient for
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Radius

Lunate Scaphoid

Ulna

Pisiform

Figure 5.1: Bones making up the human wrist. Natural objects have subtle shape
variations that are challenging to characterize.

shape matching. The feature detection process should be independent of the mesh

resolution, relatively insensitive to noise, and should not depend on parameter tuning.

5.1 Feature Detection Process

The underlying concept for our feature detection algorithm is to use the sensitivity of

the curvature map, combined with a robust segmentation approach in a multi-scale

framework. For shape matching, detection of every feature is not required (indeed,

we cannot even define every feature). Since our algorithm produces features that are

ordered by strength, we will show that we can sort them and use them for our shape

matching application in Chapter 6.

The curvature map at a point represents shape information for the point and its

surrounding region. A min-cut/max-flow graph cut algorithm, popular for image

segmentation tasks, is employed to identify features at various scales. Results from

multiple cuts are combined in a novel manner to produce a final feature set. The multi-

scale approach eliminates the need for user interaction, and for tuning parameters

based on a particular application.

The proposed feature detection algorithm is robust to noise and mesh variations.

The process is automatic, with no user controlled parameters. We demonstrate the
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Thresholding to identify 
key features

Test surface Local shape
property 

Figure 5.2: Feature detection test surface. Left: Surface shape with peaks, pit, ridge,
and valley. Center: Mean curvature scalar function. Right: Features highlighted by

selecting a function threshold. With the proper threshold, this function can
highlight useful features, however, the threshold must be found by experimentation.

algorithm on several shapes represented by triangular meshes. These shapes include

a test shape with and without noise, data from face scans, and bone data.

5.2 Local Shape Property

Basic feature shapes include the peak, pit, ridge, and valley. The common link

between these features is the dependence on the magnitude of the mean curvature.

In order to identify these features, we need some measure of the likelihood that a

vertex should be classified as belonging to one of these features. This measure needs

to incorporate information about the neighborhood around the vertex, as well as at

the vertex itself. The curvature map [61] provides this context.

Our local shape property S is

S(p) =
∫ R

0
Mean(Kmap(p))(r)dr

where R represents the radius corresponding to the maximum feature size. Kmap(p)

represents the 1-D curvature map, and Mean(Kmap(p)) and Gauss(Kmap(p)) in-

dicate the mean and Gaussian functions of the curvature map respectively. A test
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surface, colored by the local shape property, and features resulting from applying a

threshold to S are shown in Figure 5.2.

Functions based on the Gaussian curvature component of the curvature map and

combinations of mean and Gaussian curvature were also considered, but given a

suitable threshold, the mean curvature function gave the most consistent identification

of the features in the test case. This is due to the primary relationship of these

features to the mean curvature. Experimenting with the range over which the curves

were integrated by finding the sign changes in the function value did not improve the

ability to detect features.

Although this local shape property often highlights the expected features, finding an

appropriate threshold requires manual adjustment, and the results still depend on

the curvature map radius R. In addition, no single threshold could extract both the

positive curvature features (peak and ridge) and the negative curvature features (pit

and valley). These factors motivated our search for an improved feature detection

approach.

5.3 Multi-Scale Feature Detection

Our local shape property was combined with the min-cut/max-flow graph cutting

technique of Boykov and Kolmogorov [20] to create a multi-scale approach for feature

detection. The primary benefit of the graph cut algorithm is its efficiency, and the

compact boundary produced. We use two parameters, R and α, where R is the radius

for our local shape property and α is a weighting factor. We note that when the graph

cut algorithm is executed with different values for these parameters, different features

may be identified. This motivates an approach which runs the graph cut algorithm

multiple times, varying these parameters, and extracts the most significant features

overall.

As discussed previously, we are interested in features that correlate most strongly

with the magnitude of mean curvature, so we first run the graph cut algorithm on

the absolute value of the shape property. Applying the default graph cut weight

detects only the most prominent features. To detect less prominent features, a range
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Algorithm 1 Multi-Scale Feature Detection

Read Curvature Map (Kmap) for Mesh M
for Kmap radius R from Rmin to Rmax do

Compute S as the integral of the Kmap mean curvature component from 0 to R
for a range of weight factor α do

Create graph cuts Cabs, Cpos, Cneg on the positive, negative, and absolute value
of S
Identify the features in Cabs, Cpos, Cneg

for each vertex v in Mesh M do
Count feature occurrences Nabs, Npos, Nneg in Cabs, Cpos, Cneg

end for
for each edge do

Count how many times both endpoints occur in the same region
Note: Used to generate edge weights for the later max-flow/min-cut runs

end for
end for

end for
for a range of weight factor α do

Create graph cuts Cabs, Cpos, Cneg from normalized counts Nabs, Npos, Nneg

Identify and merge features from Cabs, Cpos, Cneg into composite feature sets
Gabs, Gpos, Gneg

end for
Merge Gneg and Gpos into Gabs to create the Master Feature Set G

of weighting factors (values of α) are applied. Since the larger of the positive or

negative shape property magnitudes may dominate the absolute value graph cuts,

the graph cut algorithm is also applied separately to the positive and negative values

of the local shape property. So the graph cut technique is applied three times for each

combination of parameter values (R and α) in order to ensure capture of key positive

and negative curvature features. For NR values of R and Nα values of α, this results

in NR × Nα sets of features for each of the three categories of graph cuts: absolute

value, positive, and negative.

The variations of curvature map radii and scale factors for the three graph cut cat-

egories generate a large number of possible feature sets. In order to simplify the

process of extracting a master feature set from this data, we first count the number

of times each vertex is identified as part of a feature in each of these categories. Then

we run the graph cut algorithm on the normalized frequency counts, again varying
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Feature

Background

Feature

Background

(a) Graph made from mesh (b) Graph cut

Figure 5.3: The min-cut/max-flow graph cutting algorithm finds an optimal
separation of the vertices of a mesh into a feature group and a background group.
The cut is based on weights assigned to the mesh edges (solid lines) and to edges
connecting the graph vertices to the feature and background nodes (dotted lines).

the scale factor. This yields a smaller set of features that are then merged to create

the master feature set. This process is shown in Algorithm 1.

5.3.1 Graph Cut Parameters

In order to run the graph cut algorithm, weights need to be assigned to the mesh

edges and to connections from the mesh vertices to a ‘feature’ node and a ‘background’

node, as shown in Figure 5.3. These weights, given in Table 5.1, represent the cost

of breaking the edge in order to separate the graph vertices into the feature and

background sets. Note that the vertices within a set need not form a single contiguous

region of the graph.

Once a graph cut has been created, contiguous groups of vertices are extracted from

all vertices associated with the feature node of the graph cut. These contiguous

groups of vertices are our features. Figure 5.4 shows features extracted from selected

graph cuts of a test surface.
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Table 5.1: Graph Cut Weights

Shape Property Based Feature Frequency Based

Edge Weight(cost) for Weight(cost) for
{p, q} E1{p, q} {p, q} ∈ Edges E2{p, q} {p, q} ∈ Edges
{p, F} − log(1− S(p))

√
α ∀p − log(1−N(p))

√
α ∀p

{p, B} − log(S(p))/
√

α ∀p − log(N(p))/
√

α ∀p

E1 = exp
(
− (S(p)−S(q))2

2(dist(p,q)σ)2

)
1

dist(p,q)
if S(p)S(q) < 0, 1

dist(p,q)
otherwise.

E2 = exp
(
−NT−NS

NT

)
where NT is the number of cuts, and

NS is the number for which Featurep = Featureq.

F and B are the feature and background nodes respectively.
p, q are mesh vertices.
α is the scale factor for the feature node weights.
S(p) is the local shape property value at p, limited to ε ≤ S(p) ≤ 1− ε.
N(p) is the normalized frequency count at p.

5.3.2 Multi-Scale Parameters

The two parameters that are varied are the curvature map radius R and the weighting

factor α. R is varied from small to large, with the size of the largest region based on

the radius Rmax used for the original curvature map calculation. Rmax is assumed to

be large enough to capture the largest desired feature. For example, on our human

face scans, we use a maximum radius of about two inches. Smaller radii are defined

by successively scaling by 1/
√

2. For our cases, using eight levels was sufficient to

make the minimum R comparable to the shortest edge of the mesh.

The weights for the connections to the feature node are scaled by
√

α, while the

connections to the background node are scaled by 1/
√

α. We determine α by trial

and error. We first decrease α until we get only one group. Then we increase α until

the number of groups reaches a peak. We then take uniformly spaced values for α in

this range. For our examples, we use ten divisions. Thus, the 8 Kmap radii cross the

10 scale factors results in 80 graph cuts for each category, for a total of 240 graph cuts.

Fortunately, the graph cut algorithm is very efficient, with the 240 graph cuts on a

10,000 vertex mesh taking less than 40 seconds on a 2.8GHz Pentium 4 processor.
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PositiveAbsolute value Negative

Features extracted from graph cuts

Figure 5.4: Graph cuts generated by the min-cut/max-flow algorithm on the local
shape property for three graph cut categories: absolute value (left), negative

(center), and positive (right). The absolute value graph cut picks up the peak and
pit features, while the valley feature is only found in the negative graph cut and the

ridge feature is only found in the positive graph cut.

Effect of scale factor α on negative graph cut features

α = 0.3 α = 5.5 α = 10.8 α = 16.0

Figure 5.5: Effect of the scale factor α on features identified using the
min-cut/max-flow graph cutting algorithm. Representative cuts from the negative
of the local shape property are shown. As α increases, more features are detected,

and existing features become larger. At larger α the saddle region at the base of the
peaks is detected.
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Absolute value Negative Positive

Vertex feature occurrence counts

Figure 5.6: Feature counts for the absolute value (left), negative (center), and
positive (right) graph cut categories. Maintaining separate frequency counts for the

three graph cut categories allows extraction of more well-defined features.

Figure 5.5 shows the groups produced for selected scale factors for the negative graph

cuts of our local shape property with a curvature map radius of 3.8. As the scale

factor is increased, individual features tend to get larger, and new features may show

up. The feature frequency counts are shown in Figure 5.6.

5.3.3 Group Merging Criteria

Algorithm 2 Merging Feature Set A into Feature Set B

Require: Feature Sets A and B on Mesh M
for each feature Fi in Set A do

Determine how many features n in Set B overlap Fi

if n = 0 then
Add Fi as an additional feature in Set B

else if n = 1 then
Take the union of Fi with its overlapping feature in Set B

else
Ignore the feature Fi

end if
end for

A simple greedy approach, as shown in Algorithm 2, is used to merge feature groups

together. When combining cuts from progressively larger source weights to form
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Composite feature sets

Absolute value NegativePositive Master 

Figure 5.7: Composite feature sets for the absolute value, negative, and positive
graph cuts, and the master feature set made by merging them.

composite feature sets, the groups tend to grow, but without allowing neighboring

groups to merge. This makes sure all of the features do not get merged together, as

might occur for a very large scale factor. The same algorithm is applied when merging

the composite feature sets for the absolute value, negative, and positive portions of

the function. The composite feature sets for each of the function variations, and the

final feature set made by combining them, are shown in Figure 5.7.

5.4 Results

This approach has been applied to several different types of meshes. Figure 5.8 shows

the previous test surface with the addition of Gaussian noise. In spite of the noise, the

feature structure is very similar to that of the case without noise shown in Figure 5.7,

especially for the main features.

Figure 5.9 shows feature detection applied to a low resolution scan of a human face.

The coarseness of the mesh has a smoothing effect that eliminates many details.

It also highlights the benefit of running the absolute value, positive, and negative

graph cuts to identify features for the master set that would be missed otherwise. In

Figure 5.10 we compare our feature detection method with segmentation based on

the signs of the mean and Gaussian curvature for a higher resolution human face.

Even after smoothing the curvature data, the segmentation on the left shows quite
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Test case with Gaussian noise
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property 

Thresholding of
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feature set

Figure 5.8: Test case with Gaussian noise added. The function and final feature set
are similar to the test case without noise.

a bit of noise. This is improved by setting a zero threshold so that large regions

of low curvature are separated from the higher curvature features, as shown in the

center segmentation. However, the resulting features depend strongly on the amount

of smoothing applied and the zero threshold, and are still less well-defined than the

master feature set shown on the right.

Features for the Stanford bunny are presented in Figure 5.11. While this case pro-

duced a number of very small features, the larger feature regions, such as in the ears,

face, feet, and tail, seem to be features that could be useful for shape matching.

The features for several bone meshes are shown in Figure 5.12. These bones generally

have fairly subtle features. Note the similarity of the feature layout for Ulna A (View

2) and Ulna B in spite of a significant difference in mesh resolution and being from

different subjects.

5.5 Chapter Summary

This chapter presented a two-step multi-scale feature detection approach that uses a

local shape function based on the curvature map. This feature detection approach

employs an efficient min-cut/max-flow graph cutting algorithm and greedy algorithm

to merge feature sets. The method is robust with respect to noise, and consistently
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Cyberware head 
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Absolute value Positive Negative Master

Figure 5.9: Features detected on a Cyberware low resolution female face scan. The
absolute value graph cuts pick up the nose chin and hair features, while the negative

cuts detect the eyes. In spite of the smoothness of the mesh, master feature set
captures the prominent features of the face.

Master
feature set based 
on the curvature 

map

Sign of 
curvature 

segmentation 
after data 
smoothing

Sign of 
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segmentation 
with zero 

threshold and 
smoothing

Figure 5.10: Comparison of graph cut feature detection with sign of curvature
segmentation for a high resolution Cyberware face scan. Before coloring by the sign

of Gaussian and mean curvature, the curvature values were smoothed. The
segmentation in the center uses a zero threshold to separate low curvature regions

from higher curvature features. However, the master feature set provides more
well-defined features.
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Shape features for the Stanford bunny (two views)

Figure 5.11: Features detected for the Stanford bunny. Several features, such as the
large sections of the ears and the features in the face region, are very intuitive.

PisiformView 1 - Ulna A - View 2 Ulna B Capitate

Figure 5.12: Master feature sets for selected bone meshes. The Ulna is challenging
due to the limited number of pronounced features and the significant difference

between the scales of the features. Similar features were detected for cases A and B
even though the resolution of the meshes is very different. Reasonable features were

also identified for the Pisiform (second from right) and Capitate (far right).



118

yields a reasonable set of features. Most importantly, there is no user interaction or

parameter tuning required.

The method could benefit from alternate algorithms for merging feature sets. The

greedy approach works fairly well, but may cause some over-segmentation, since it

does not allow two features to coalesce into one, which might be desirable in some

instances.

Because the local shape property is based on the integral of mean curvature, it detects

primarily higher curvature features. While less useful for identifying shape similarity,

the capability to detect flat or nearly flat regions might further reduce the search

space for feature detection and shape matching tasks.
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Chapter 6

Shape Matching

The previous chapter presented a robust feature extraction process. This chapter

develops a shape matching approach that uses extracted features for both an initial

alignment of 3-D surfaces, and for refining the correspondence between those surfaces.

In our target applications, differences between the objects can range from subtle

changes in fine details to missing or added elements. Our shape matching method

finds corresponding features and aligns the objects based on those features. The

alignment is used to geometrically check the feature correspondence. Then feature

point correspondence is extended to the entire object by generating a common param-

eterization. This produces a point-to-point correspondence between the objects. This

correspondence can be used to analyze the relative size and location of the features.

The overall shape matching process is shown in Figure 6.1. The work to date has been

limited to pair-wise comparison of objects, but is easily extended to compare more

than two objects. For each object, a set of features is identified using the techniques of

Chapter 5. The similarity of these features is compared to generate a candidate list of

corresponding feature pairs. The top candidates from this list are used to generate an

initial alignment, which is then refined using the feature data. The initial alignment

produces a correspondence that is again refined using feature similarity and surface

parameterizations are used to define the final correspondence.

Creating the feature pairs and finding the best initial alignment is fully automatic.

The user currently chooses which of the refinement options to apply, but there are

no parameters for the refinement process. The user chooses how many additional
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Decide what to compare

3. Find best initial alignment using 
pair triplets

4. Refine alignment of corresponding 
features 

2. Create ordered list of candidate 
feature pairs

5. Compute initial correspondence 
from physical proximity

7. Improve feature points based on 
shape similarity

6. Find additional feature point 
correspondences

8. Refine correspondence using 
common spherical parameterization

1. Compute features and curvature 
map for each object

Figure 6.1: Shape matching process steps.

feature points are needed and there are parameters that limit the point movement

for similarity improvement.

6.1 Shape Comparison Goals

Our primary goal is to find the point-to-point correspondence between the objects.

This correspondence will be used to classify the nature and magnitude of shape dif-

ferences, so there are several desirable properties.

• The correspondence should be 1-to-1 and should also be continuous. This is a

fundamental requirement for a valid common parameterization.

• It is also desirable that the correspondence be smooth. In general, this means

that relative distances between pairs of points on one object should be similar

to the relative distances between their corresponding points on the other object.

Locations where the correspondence is not smooth should identify differences

between the objects.

• The correspondence should reflect shape similarity as much as practical. This

is based on the intuition that because the objects being compared are similar,
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some corresponding portions of the objects should be similar, and for these

portions, corresponding points should reflect this similarity. This is important

to ensure that lack of similarity at corresponding points represents differences

between the objects, and not just a poor definition of corresponding points.

6.1.1 Technical Challenges

One critical issue for automated shape matching is the quantity of data to be processed

and the difficulty in describing shape in a meaningful way. The possible variations

in shape are unlimited. By extracting a small number of features, ordering features

by strength, and ordering potential feature pairs based on similarity, the scope of the

problem can be drastically reduced to enable very efficient matching.

Another critical issue affecting automated shape matching is noise. Noise can in-

troduce error into the calculation of properties such as curvature, as presented in

Chapter 3. Typically, smoothing is applied to reduce noise, but smoothing can also

obscure small magnitude or very localized features. As a result, it can affect the qual-

ity of the alignment calculation. This issue is addressed by developing features, based

on improved underlying curvature calculation, that are less susceptible to noise.

Outliers can also impact shape matching. An outlier is a point or feature very different

from its neighbors or from the corresponding locations in the other object. For

example, outliers may be features that occur in only one of the two objects. Outliers

may also be caused by a severe instance of local noise or sampling error. Such outliers

may produce large distances that are likely to throw off shape matching methods that

try to minimize a distance measure.

6.2 Determining Object Correspondence

The correspondence between objects determines for each point on one object, what

the corresponding point is on the other object. One approach for generating this

correspondence is to physically align the objects and identify corresponding points
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based on their proximity. Correspondence based on the best physical alignment can be

very good if the object shapes are very similar. The more the shapes differ, the higher

the likelihood that incorrect correspondences may be found. Examples of incorrect

correspondences are multiple points on one object mapping to the same corresponding

point on the other object, or discontinuities where points ‘close together’ on one object

map to points not close together on the other object.

The approach used in this dissertation generates a correspondence between objects

based on a mapping of the objects to a common parametric domain. This common

parametric domain for the objects reduces the reliance on their physical alignment.

By definition, a point in the common parametric domain maps to two correspond-

ing points, one on each object. Using manifold representations avoids discontinuous

mappings. The challenge is to generate mappings that preserve certain key corre-

spondences, and provide reasonable correspondences between other points on the

objects. The mapping to the common parametric domain is based on alignment of

some number of reference point pairs.

6.2.1 Feature Correspondence

To define the common parametric domain, we identify reference point pairs by es-

tablishing correspondence between features of the objects. Each mesh vertex could

represent a feature. Even with the same number of vertices on each object, there may

still not be a good one-to-one correspondence between the vertices. A more practical

alternative is to extract features from the surface of the object. The set of features

is generally much smaller than the number of vertices in the object representation,

and features also have the benefit that they can represent some meaningful region or

property of the object surface. It should be noted that in general there is no guarantee

that there will be a one-to-one correspondence between features.

The features that we generate are described in Chapter 5. Our approach produces a

relatively small number of features that are a function of the surface shape and do

not depend heavily on the resolution of the mesh.
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Common parameterization provides implicit 
correspondence between points of f1 and f2

s=0 s=1

f1(s)

f2(s)

Figure 6.2: Values of s in [0, 1] define a correspondence between a point of f1 (blue)
and a point of f2 (red).

6.2.2 Surface Parameterization

Surface parameterization establishes a correspondence between the surface of a 3-D

object and a parametric domain of the same genus. Surface parameterization is an

extension of curve parameterization from 1-D to 2-D.

Figure 6.2 shows how the common parameter s, represented by the points along the

purple line, generates a correspondence between the points on f1 (blue curve) and f2

(red curve). The dashed lines connect the end points and three intermediate points

of f1 and f2 to their common parameter values.

The mappings from the objects to the common parametric domain define a chain of

transformations that take points of one object to their corresponding points on the

other object. For example, Praun and Hoppe [140] use a mapping from a mesh to a

sphere, and from the sphere to a regular polyhedra (tetrahedron, cube, octahedron,

etc.) for use in texture mapping. To be useful, the mappings must be one-to-one and

onto (i.e., a bijection) so that the inverse mappings can be found.
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Bone 1 flattened mesh Bone 2 flattened mesh

Figure 6.3: Surface meshes flattened into the plane for two bones.

There may be more than one possible parameterization approach for a given object.

For example, a bone represented by a genus zero surface may be mapped to a sphere,

or a subset the bone, such as one end, may be mapped to a plane. The following

sections look at some of the issues for planar and spherical parameterizations.

Planar Mapping

For a surface that is homeomorphic to a disc, a parameterization can be generating

by flattening the surface to a plane using the techniques described in Section 2.3.

The flattened mesh has the same connectivity as the original mesh, and represents

a parameterization of the original mesh. Then corresponding feature points can be

aligned in the plane. One motivation for operating in the plane is that mapping

functions, and routines that adjust the parameterization are simpler to implement in

two-dimensions.

When the mesh is mapped to the plane, there will be distortion of the edge lengths

and areas of the triangular faces. Techniques such as overlay smoothing [157] can be

used to minimize area distortion, as shown in Figure 6.3. However, distortion cannot

generally be eliminated. This is also true for other types of parameterization.
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Figure 6.4: Flattened mesh with Gaussian curvature for the radius bones.

Object A mesh Object B mesh

Object A spherical 
parameterization
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Object B spherical 
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Figure 6.5: Mapping from mesh to spherical parameterizations to common
parameterization.

Figure 6.4 shows the curvature from the 3-D object mapped to the flattened meshes.

Curvature is just one example of a property that can be represented on the flattened

mesh. Features or any other vertex or face based properties could be represented as

well.
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Mapping to a Sphere

Figure 6.5 relates two objects through the mapping between their spherical param-

eterizations. The function f1 maps locations from ObjectA to its spherical param-

eterization, while f−1
1 (the inverse of f1) maps locations from the spherical param-

eterization back to ObjectA. Function f4 and its inverse perform similar mappings

between ObjectB and its spherical parameterization. Functions f2 and f3 map be-

tween the common parameterization and the spherical parameterizations of ObjectA

and ObjectB respectively. For the points P ∈ A and Q ∈ B, the correspondence

between P and Q is defined by the composite mappings P = f−1
1 (f−1

2 (f3(f4(Q)))),

and Q = f−1
4 (f−1

3 (f2(f1(P )))).

6.2.3 Beyond Rigid Body Transformations

In this research, we use rigid alignment only to generate coarse alignment and test for

the best triple of feature pairs. From this coarse alignment and shape similarity, we

compute correspondence directly via parameterization and avoid more complex 3-D

transformations.

We have also incorporated an iterative closest point algorithm as an additional phys-

ical alignment option. The iterative closest point (ICP) [12] algorithm is a standard

algorithm for aligning point sets using a rigid transformation. The ICP algorithm that

we obtained from Rusinkiewicz includes options to compute the best rigid transfor-

mation, the best rigid plus scaling transformation, or the best affine transformation.

The ICP algorithm is not formally part of our shape matching process, but using

the more general scaling or affine transformation options can extend our matching

process by providing a coarse alignment based on a more complex transformation.

6.3 Implementing a Feature-Based Matching Pro-

cess
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Our feature-based matching process is shown in Algorithm 3. The four phases of

the process are (1) preprocessing, (2) generating a coarse alignment, (3) generating

reference point pairs, and (4) determining the final correspondence.

6.3.1 Curvature, Curvature Map, and Feature Generation

The first three steps of Algorithm 3 represent preprocessing applied to the mesh rep-

resentations of individual objects. Surface curvature is calculated using the quadric

fitting method based on a two-ring natural parameterization as described in Chap-

ter 3. This method was chosen primarily because it is robust to noise.

Curvature maps are then generated for each vertex as described in Chapter 4. Both

1-D and 2-D maps can be generated, with the 1-D maps generated using rings and

the 2-D maps generated from geodesic fans. We use the 1-D map generated using

rings, which is the fastest to generate. The curvature map radius for the bone meshes

was chosen to be between one-fourth and one-half of the average dimension of the

objects bounding box. For the face scans, the radius was chosen to be slightly larger

than the largest significant feature, typically the nose.

Once the curvature maps have been generated, features are detected in a fully auto-

mated process as discussed in Chapter 5. The range of feature sizes follows from the

choice of the curvature map radius.

6.3.2 Computing the Best Feature Pairs

The process for determining candidate feature pairings is shown in Figure 6.6. This

is a more detailed view of Step 2 in Figure 6.1. In addition to being used to compute

features, the curvature maps are also used to compare the similarity of the features.

For each feature, the average curvature map is computed from the strongest points in

the feature. The average Gaussian curve is shown in Figure 6.7. The mean curvature

curve is calculated similarly. Strongest points are so designated in the feature de-

tection step as feature points which occur most frequently during the multiple graph

cutting runs. The similarity is then computed for every point in the feature relative
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Object A
features

Object B
features

Find average curvature map for each feature

Calculate standard deviation of 
similarity for each feature

Compute similarity of all feature pairs 

Sort pairs by normalized similarity

Truncate list of feature pairs

Figure 6.6: Steps in the process for determining candidate feature pairings.

Average curvature map for a feature
Features with 

reference points

Figure 6.7: Average curvature map for a feature (left) and feature reference points
(right). Note: only the Gaussian curve is shown.
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Figure 6.8: Triangles formed by three feature reference point pairs on the surface of
two ulna bones.

to the average to get the standard deviation of the similarity. The radius used for the

similarity calculation is one-half of the maximum radius of the curvature map. Then

each feature of Object A is compared to every feature of Object B, by computing

the similarity of their average curvature maps, and normalizing by the product of

the standard deviations. The pairs are then ranked by this similarity score, and a

threshold is used to truncate this list. Currently a simple approach is used which just

keeps a fixed fraction of the list of corresponding pairs. We conservatively choose a

fraction of 25% in our tests.

A reference point is also calculated for each feature. This is accomplished by finding

the boundary of the region containing the strongest feature points for each feature and

growing inward to the center of the feature. One of the points within the region, with

the largest distance from the boundary of this region in terms of edge count, is selected

as the reference point for the feature. This point is used for the initial alignment and

may be replaced by a better choice during refinement of the alignment.

Triplets of corresponding feature reference point pairs are used to generate candidate

initial alignments, starting with the most similar pairs. Using the reference point
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for each feature, the triplet for each object defines a triangle connecting these three

features, as shown in Figure 6.8. The rigid transformation that best aligns these

triangles is computed and then tested to see how well the object is aligned by this

transformation. The metric used for the alignment quality is the sum of the distances

from each reference point to the closest point (not necessarily a reference point) on

the other object.

Pruning with Geometric Constraints

The cost of comparing every possible three-point correspondence of two objects is

prohibitive. Even with the identification of a limited number of features, additional

pruning of the correspondence space is required. For example, with fifteen features

on each object, there are over 106 possible correspondences. We apply a common

pruning method which uses a geometric constraint to eliminate triplets when the

distances between the features of one object is inconsistent with the distances between

the corresponding features of the other object, indicating that the transformation

the triplet would produce is physically unrealistic. Consistency is determined by

calculating the ratio of the edge lengths for each pair of corresponding edges and

discarding the triple of feature pairs if any of the edge length ratios is outside the

range (α, 1.0/α). For our work, we use α = 0.8.

Benefits of Ordered Features

Two other constraints can be used to prune the list of correspondences to be tested.

First, the strength of the features can be used to place the highest priority on testing

correspondences involving strong features. Secondly, the similarity measure can be

used to order the possible feature pairs based on their similarity. Applying a threshold

to the list of features or feature pairs can significantly reduce the number of corre-

spondences to be tested, while retaining a high likelihood that the best alignments

will not be eliminated prematurely. By sorting the feature pairs by similarity, the

most likely triples are tested early. In our experiments, the best match was generally
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• Physical alignment
– Depends on choice of reference points
– Determines three feature pairs

• Refinement
– Test different possible reference points 

within the same feature pairs
• Selected at random from all of the 

points in a feature

Figure 6.9: Refinement of the feature reference points for the selected feature pairs
on the surface of two ulna bones.

found in the first two hundred triples tested. As a result, we chose to limit the max-

imum number of triples tested, setting the limit to 1000 or 2000 depending on the

case.

6.3.3 Refining the Feature-to-Feature Fit

The previous step generates a coarse alignment based on a subset of the set of reference

points. The reference points were chosen in a heuristic manner from a much larger

set of candidate points. This drastically reduces running time, but with a sacrifice

of alignment quality. While only a coarse alignment is needed, this initial alignment

may be quite far off due to the initial choice of reference points.

A refinement step is used to improve upon this initial alignment. It maintains the

correspondence between the three feature pairs, but finds more suitable choices for

the reference points within the features. This refinement is illustrated in Figure 6.9.

Three different algorithms have been investigated.

The first refinement algorithm revisits the selection of the reference points, this time

selecting a reference point from the set of all of the feature points instead of just

the strongest feature points. This new set of reference points produces a new rigid
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alignment. The resulting quality is calculated, as represented by the sum of the

reference point distances from the other object. The new alignment replaces the

original alignment if the quality improves. Quality is measured as the sum of the

distances of all reference points from the other object.

The next two refinement algorithms apply a randomized process to improve alignment

quality. They each randomly select several alternate reference points for each feature

pair. One algorithm tests the different combinations of these candidate reference

points and chooses the best quality alignment produced. This can be somewhat

time consuming since for m candidates at each of the six features, there are m6

combinations to test.

The final method improves on this by adjusting one reference point at a time, resulting

in O(6m) combinations. Several passes can be performed efficiently, and the alignment

updated whenever the new reference point improves the alignment quality.

Several methods in the literature apply ICP once a coarse alignment has been found.

ICP looks at distances from all points to the other surface instead of distances only at

the reference points. While this does make the overall distance between the objects

smaller, it can also make the distances from the feature reference points to the surface

of the other object larger. ICP does not weight the feature points any higher than

other points, and since the number of reference points is small compared to the total

number of points, ICP devalues the feature data. For this work, it is generally more

important for the features to match than for the distances for all other points to be

small. Therefore, while we have incorporated an ICP algorithm into our tools, we do

not currently employ it for the shape matching process. As mentioned earlier, it can

be used if the scaling or affine alignments are required.

6.3.4 Physical Correspondence and Area of Overlap

At this stage, only three corresponding feature pairs have been identified. So the next

step is to calculate a rough correspondence from the refined coarse alignment. This

rough correspondence is used only to determine potential overlaps between features

of different objects. To create this correspondence, a brute force approach is used to
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find, for each point on one object, the closest point on the other object. In our work,

this brute force approach has been sufficiently fast. A pair of features is considered

to overlap if a point in a feature of one object corresponds to a point that lies in the

region of a feature on the other object.

Nothing so far has required that objects be genus zero. For example, the two objects

may be bone samples whose spherical topology meshes have been sliced at possibly

different places, and so there may be missing parts. This results in a boundary for

the mesh. This trimming and the opening created do not affect the coarse alignment

process, however they can affect the quality of the rough correspondence. By detecting

points that correspond to the boundary points of the other object and checking the

distance between them, we can apply a threshold to flag points that do not have valid

correspondence in the other object. We apply a filter to remove such points and the

opening in the remaining mesh can be triangulated to convert the open mesh to a

genus zero surface.

6.3.5 Generating Additional Feature Pin Point Pairs

It is possible for a feature of one object to overlap more than one feature of the

other object. In this case, the feature that overlaps multiple features can be split.

This is done by labeling feature points by the corresponding feature they overlap,

and growing rings out from the overlap region until the entire feature is labeled. The

feature is split into subregions according to the labels. It is also possible that a feature

of one object may not overlap any feature in the other object. These features are

ignored.

For each of these additional feature pairs, a new pair of pin points is found. First,

the point of each feature region with the largest absolute mean curvature is found.

Next, the two features are extracted and aligned using ICP. From this alignment, a

corresponding point in the other feature is found. Suppose C and D are features

in objects A and B respectively. This yields two point pairs; the maximum mean

curvature point in C and its corresponding point in D, and the maximum mean

curvature point in D and its corresponding point in feature C. One of these pairs is

chosen as pin points for this feature pair using the following symmetry test.
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Every point in A has a corresponding point in B and every point in B has a cor-

responding point in A. Suppose P1 ∈ A has corresponding point P2 ∈ B, P2 has

corresponding point P3 ∈ A, Q1 ∈ B has corresponding point Q2 ∈ A, and Q2 has

corresponding point Q3 ∈ B, Since the rough correspondence mapping may not be

a one-to-one mapping, P1 can be different from P3 and Q1 can be different from Q3.

In the symmetry test the distance from P1 to P3 is compared with the distance from

Q1 to Q3. The pair with the smaller distance is considered more symmetric, and this

pair is chosen as the new pin point pair.

6.3.6 Adding Non-Feature-Based Pin Point Pairs

The number of pin point pairs based on overlapping features can vary greatly, de-

pending on the number and layout of features identified on the individual objects. A

small number of pin point pairs can limit control of the correspondence between the

objects. To improve control, additional pin point pairs that are independent of the

features can be added. To add a point, each vertex is labeled with its distance from

the nearest pin point in terms of edge count. The vertex with the largest count in

A or B is chosen. Its corresponding point in the other object is chosen as the other

point of the new pin point pair.

6.3.7 Similarity-Based Adjustment of Point Pair Locations

The pairs of pin points come either from the best alignment of select features, over-

lapping features, or the addition of a point and its corresponding point based on

the rough correspondence. To improve the correspondence, the pin points can be

adjusted using the curvature map similarity measure in a greedy approach. Consider

a pin point pair PA ∈ A and PB ∈ B. First the similarity of PA to PB and to each

of PB’s neighbors is checked. If PA is more similar to one of the neighbors than to

PB, the neighbor is a candidate to replace PB. Similarly, if PB is more similar to a

neighbor of PA than to PA, the neighbor is a candidate to replace PA.

To avoid large distortions of the mesh, the pin point adjustment is limited by tracking

the change in geodesic distances between a pin point and its neighboring pin points. A
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Initial pin point locations Adjustment steps Final pin point locations

Lunate 1
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Figure 6.10: Adjustment of pin point locations based on similarity. The original pin
point locations (left) are moved in an iterative process (center) to their final

locations (right).

cost function is constructed with two terms, a similarity term based on the amount of

improvement in the similarity, and a stretching term based on the change in geodesic

distances. Weights are applied to balance the magnitudes of the terms. Pin point

adjustment proceeds only so far as the resultant cost function decreases.

The weights can be varied to control the magnitude of the adjustment. The goal is

to adjust the weights so that where the change in similarity between a point and its

neighbors is small, the stretching term will limit the pin point movement, while a

large similarity improvement by movement from a pin point to its neighbor will be

allowed. Currently, setting the weights is a manual process, since we cannot know

a priori what the distances between the pin points on the objects, or the difference

in similarity values will be. Figure 6.10 shows the adjustment of pin point locations

based on the shape similarity measure. The original pin points are shown on the

left. The middle view shows the original pin points in black and locations during the

iteration process in gray. Note that not all of the pin points move. The final pin

point locations are shown on the right.
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Figure 6.11: Iterative smoothing with a proper choice of weights can enable the
spherical parameterization to better represent the relationships on the original mesh.

6.3.8 Correspondence and Parameterization

Once the final pin point pairs have been determined, the final correspondence can

be generated by mapping both objects to a common spherical parameterization. An

initial spherical parameterization [147] is made for each object by partitioning the

mesh into two halves, and using an isomap technique to parameterize the equator.

Each half is mapped to a hemisphere and the hemispheres are joined at the equator.

Weighted smoothing techniques are used to adjust the points on the sphere to control

the vertex distribution and to avoid folding. Different weights may be used to control

different aspects of the distribution, such as equalizing area of the mesh triangles, or

making the distribution of the mesh triangles on the sphere approximate the distri-

bution of triangles on the original mesh. For example, using Floater’s method [51]

to calculate weights from the original mesh, and using those weights to smooth the

mesh on the sphere, leads to better similarity between the mesh triangles and the

corresponding triangles of the spherical parameterization.

Why is this distribution important? Because only the pin point pairs will be controlled

explicitly in the common spherical parameterization, the correspondence between
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other points of the original meshes relies on the mapping being ‘well-behaved’. The

more distortion in the mapping from the mesh to the parameterization, the more pin

points that are required to represent the mapping accurately.

Several metrics have been proposed to measure the distortion associated with map-

pings between triangular meshes [148, 140, 93, 150]. We implemented two stretch

measures, one specific to spherical mapping, similar to the method of Praun and

Hoppe [140], and one for comparing general meshes similar to the method of Schreiner

et al. [150]. These methods show consistent trends and were used to determine the

choice of weights to generate reasonable similarity between the original mesh and its

spherical parameterization. Figure 6.11 shows an initial and an improved spherical

parameterizations for a coarse mesh of a lunate bone. The first spherical parameteri-

zation (center) had stretch measure of 0.19 where 1.0 is ideal. The second parameter-

ization had stretch measure of 0.43 indicating a significant improvement. For these

cases, the best values obtained with our smoothing techniques are in the range from

0.4 to 0.6. Note that the point distribution between the center pin points (P1 and

P2) is more consistent with the original mesh distribution in the right view compared

to the center view.

Aligning Spherical Parameterizations

In order to establish the correspondence between the objects, they need to have a

common spherical parameterization. Mapping each object to a common spherical

parameterization involves using the pin point pairs to adjust one or both of the

individual spherical parameterizations. The steps in this process are shown in Phase

4 of Algorithm 3. The first step is to find the best rigid rotation of the spherical

domain to get an approximate alignment of the pin point locations on the sphere.

This rigid rotation is applied and then the pin point locations are averaged to get

target pin point locations on the common spherical parameterization. Alternately,

the set of pin points from one of the objects can be selected as the target pin point

locations.

Next, we create a common base parameterization from the pin point pairs. The

construction of the base parameterizations will ensure that the pin points are aligned.
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Figure 6.12: Creation of the common spherical parameterization. A common base
mesh is created as an intermediate step in the alignment process.

There are now three sets of canonical sphere points defined; SetA which is the set

of pin point locations on the spherical parameterization for ObjectA, SetB which

is the set of pin point locations on the spherical parameterization for ObjectB, and

SetT which is the set of target pin point locations. A base mesh is generated from

these three sets of points. First, a convex hull triangulation is generated for SetA

and SetB. The connectivity for each of these triangulations can also be applied to

the SetT and compared with a convex hull triangulation of SetT . Differences in the

connectivity can be resolved by generating the great circle arcs associated with edges

representing differences in connectivity, and adding points where these arcs intersect

on the sphere. Points are also added at the corresponding locations of SetA and SetB

and the sets are re-triangulated.

Figure 6.12 illustrates the process of mapping the points on the individual spherical

parameterizations onto the common parameterization. The individual spherical pa-

rameterizations are mapped onto versions of this base mesh adapted to their specific

pin point locations. The spherical parameterization for ObjectA is mapped onto the

base mesh representation on the SetA points. This same mapping applied to the
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Lunate 1 Lunate 2

Figure 6.13: Mesh and surface views for two lunate bones.

Lunate 1 features 
(two views)

Lunate 2 features 
(two views)

Figure 6.14: Features identified for two lunate bones.

base mesh on SetT projects the points onto the common spherical parameterization.

A similar mapping is generated for ObjectB. The common spherical parameteriza-

tion produces a point-to-point correspondence between ObjectA and ObjectB. The

construction ensures that the pin points are aligned.

6.4 Bone Shape Comparisons

6.4.1 Lunate Bone Data Set

Figure 6.13 shows the surface mesh and shaded views for two lunate bones. Lunate

2 is from a right wrist, and lunate 1 is from a left wrist and has been mirrored for
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Figure 6.15: Alignment of the lunate bones based on feature correspondence, and
the pin points generated.

Spherical parameterization

Lunate 1 Lunate 2 Lunate 1 features 
mapped onto 

Lunate 2

Lunate 2 features 
mapped onto 

Lunate 1

Figure 6.16: Spherical parameterizations used to determine correspondence (two left
views). The two right views show the features from each lunate mapped onto the

other lunate.
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Ulna 1 Ulna 2

Figure 6.17: Geometry and mesh representation for two ulna samples.

comparison with the right lunate. The shapes are very smooth and are represented by

a dense mesh. Each mesh contains 7800 vertices and 15596 faces. Figure 6.14 shows

the features generated for these bones. Ten features were found for each object,

although there is not a one-to-one match of the features.

The left view in Figure 6.15 shows the coarse alignment using the features identified.

The second alignment tested was the best, with a total of 136 alignments tested and

1632 possible alignments pruned away. The center and right views show the pin points

that were selected for the overlapping features.

The first two views in Figure 6.16 show the spherical parameterizations for lunate 1

and 2 after aligning the parameterizations using the pin point pairs. These aligned

spherical parameterizations define the correspondence between these bones. The sec-

ond view from the right shows the features from lunate 2 mapped onto lunate 1

using this correspondence. The right view maps the features from the lunate 1 onto

lunate 2. Comparison with Figure 6.15 shows a high degree of similarity between

the original and mapped features. This gives an indication of the consistency of the

correspondence.

6.4.2 Ulna Bone Data Set

Figure 6.17 shows the surface mesh and shaded views for two ulna samples from

different subjects. There are three issues complicating this case. First, there is

a significant difference in resolution with ulna 1 containing 2108 vertices and 4171
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Figure 6.18: Features detected for two ulna samples.

faces, while ulna 2 has 9645 vertices and 19133 faces. The second issue is that ulna

1 includes a larger portion of the shaft, while ulna 2 is mainly just the head of the

ulna. The third issue is that there is a hole in the surface where the shaft would

continue so that the surfaces are not genus zero. Features can still be detected, as

shown in Figure 6.18. In spite of the difference in resolution, the features for the two

ulna samples are similar.

The left view of Figure 6.19 shows the alignment based on the 14 and 22 features

for ulna 1 and 2 respectively. The 22nd out of 1000 matches tested was the best,

with pruning removing 20838 potential matches. The dark gray in the center view

indicates points of ulna 1 that do not have valid correspondence with ulna 2 and can

be trimmed. The trimming step is combined with closing the hole to generate genus

zero versions of ulna 1 and 2. Features for the trimmed version of ulna 1 are shown

in Figure 6.19 (right).

Figure 6.20 shows the feature-based alignment of the trimmed data set (left), and the

pin points generated for ulna 1 (center) and ulna 2 (right).

The aligned spherical parameterizations for the two ulna samples are shown on the left

in Figure 6.21. The right side of the figure shows the cross-mapping of features from

one sample onto the other using the correspondence produced by the common spher-

ical parameterization. The cross-mapped features can be compared to Figure 6.20.
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Ulna 1 filtered based on 
correspondence

Ulna 1 after trimmingFeature-based alignment 
(Ulna 1 – orange, Ulna 2 – blue)

Figure 6.19: Alignment and trimming of the samples to a common portion of the
ulna. Dark gray (center) indicates regions for which there is no corresponding point

in the other object.

Ulna 1 
pin points

Feature-based alignment
(Ulna 1 - orange, Ulna 2 – blue)

Ulna 2 
pin points

Figure 6.20: Alignment of the trimmed samples and the pin points generated.
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Ulna 1 spherical 
parameterization

Ulna 1 with features 
from Ulna 2

Ulna 2 spherical 
parameterization

Ulna 2 with features 
from Ulna 1

Figure 6.21: Spherical parameterizations aligned using the pin points for the ulna
samples. The views on the right show the features of one ulna mapped onto the

other using the correspondence produced by the common spherical parameterization.

Refined pin point regions Aligned spherical parameterizations 

Ulna 1 Ulna 2 Ulna 2Ulna 1

Figure 6.22: Additional pin points with adjustment based on similarity. Voronoi-like
regions associated with each pin point are shown on the left. The adjusted spherical

parameterizations are shown on the right.

Some issues can be seen near the base where the trimming occurred, and near the tip

of the styloid process where the shapes are noticeably different.

In order to improve the common parameterization, we automatically add additional

pin points and adjust these pin points to improve the similarity. Figure 6.22 shows

Voronoi-like regions associated with the pin points. These regions are based on edge

count rather than distance, and support the process of adding pin points at locations

farthest from any current pin point. These pin points are adjusted to improve the

similarity of the pin point pair, which improves the quality of the overall parame-

terization. The adjusted spherical parameterizations are shown on the right side of

Figure 6.22.
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Ulna 2 features mapped to Ulna 1Ulna 2 features
With adjustmentWithout adjustment

Figure 6.23: The features of ulna 2 are shown on the left and mapped onto ulna 1
without (center) and with (right) additional pin points and pin point adjustment.

Ulna 1 features mapped to Ulna 2Ulna 1 features
With adjustmentWithout adjustment

Figure 6.24: The features of ulna 1 are shown on the left and mapped onto ulna 2
without (center) and with (right) additional pin points and pin point adjustment.
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Radius 1 Radius 2

Figure 6.25: Geometry and mesh representation for two radius samples.

Radius 1 Radius 2

All features All featuresMost prominent Most Prominent

Figure 6.26: Features detected for radius 1 and radius 2 bone samples.

Figures 6.24 and 6.23 show the cross mapping of parameters without and with the

additional pin points and pin point adjustment. The adjustment improves the param-

eterization in several areas, particularly near the base where the trimming occurred.

6.4.3 Radius Bone Data Set

Figure 6.25 shows the surface mesh and shaded views for two radius samples from

different subjects. Like the ulna dataset, these samples have different resolution,

cover different amounts of the bone surface, and are not genus zero. Radius 1 has

3674 vertices and 7286 faces while radius 2 has 17587 vertices and 35006 faces.

Figure 6.26 shows features for the two radius samples. Thirty-four features were

found for radius 1 and 100 features were found for radius 2. The left view for each
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Radius 1 filtered based 
on correspondence

Alignment after trimmingFeature-based alignment 
(Radius 1 – orange, Radius 2 – blue)

Figure 6.27: Alignment and trimming of the samples to a common portion of the
radius. Dark gray (center) indicates regions for which there is no corresponding

point in the other object.

Radius 1 spherical 
parameterization

Radius 1 pin points Radius 2 spherical 
parameterization

Radius 2 pin points

Figure 6.28: Spherical parameterizations aligned using the pin points for the radius
samples. The views on the right show the features of one radius mapped onto the

other using the correspondence produced by the common spherical parameterization.

sample shows all of the features and the right view shows only the 15 most prominent

features.

Figure 6.27 shows the alignment (left), correspondence-based filtering used to trim

radius 1 (center) and the trimmed alignment (right). Using all features, the best

alignment of the first 2000 tested (29314 pruned) was number 1255. However, if the

alignment was limited to the 20 most prominent features of each surface, the best

match was number 72 of 1000 with 20311 possible alignments pruned. The value of

the alignment quality distance metric (sum of all distances from reference points to

the other object) was comparable for both cases.
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Refined pin point regions Aligned spherical parameterizations 

Radius 1 Radius 2 Radius 2Radius 1

Figure 6.29: Additional pin points with adjustment based on similarity. Voronoi-like
regions associated with each pin point are shown on the left. The adjusted spherical

parameterizations are shown on the right.

Radius 2 features mapped to Radius 1Radius 2 features
With adjustmentWithout adjustment

Figure 6.30: The features of radius 2 are shown on the left and mapped onto radius
1 without (center) and with (right) additional pin points and pin point adjustment.

Figures 6.28 and 6.29 show the alignments of the spherical parameterization without

and with additional pin points respectively.

The cross-mapping of features is shown in Figures 6.30 and 6.31. Better similarity

with additional pin point adjustment is indicated in Figure 6.31 by the orange feature

(left edge), red feature (right edge), and the relation of the cyan and yellow features

(left-center).
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Radius 1 features mapped to Radius 2Radius 1 features
With adjustmentWithout adjustment

Figure 6.31: The features of radius 1 are shown on the left and mapped onto radius
2 without (center) and with (right) additional pin points and pin point adjustment.

Sample 1 Sample 2

Figure 6.32: Geometry and mesh representation for two intermediate cuneiform
samples.
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Sample 1 
features

Sample 2 
features

Feature-based alignment
(Sample 1 – orange, Sample 2 – blue)

Figure 6.33: Features detected for two intermediate cuneiform bone samples (left
and center), and the resulting feature-based alignment (right).

6.4.4 Intermediate Cuneiform Bone Data Set

Figure 6.32 shows the surface mesh and faceted views for two intermediante cuneiform

bone samples. Note the roughness of the mesh due to the coarseness of the discrete

sampling. A small amount of smoothing was applied to avoid an instability in the

curvature calculation when fitting a quadric function to points that fall on the edges

of a pyramid. Both meshes contain approximately 4800 vertices and 9700 faces.

Figure 6.33 shows the features detected (left and center) and the alignment based on

those features (right). With 15 and 22 features on samples 1 and 2 respectively, the

best alignment occurred on the 360th of 1000 tested with 24639 possible alignments

pruned.

Figure 6.34 shows the pin points and the aligned spherical parameterizations for the

two intermediate cuneiform bone samples.

The cross-mapping of features is shown in Figure 6.35. The left pair of views show

the features of sample 2 on sample 2 and mapped onto sample 1. The right pair of

views show the features of sample 1 on sample 1 and mapped onto sample 2. The

correspondence for this case seems well-behaved.
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Sample 1 spherical 
parameterization

Sample 1 pin points Sample 2 spherical 
parameterization

Sample 2 pin points

Figure 6.34: Pin points generated for the intermediate cuneiform samples (left two
views), and the spherical parameterizations aligned using those pin points.

Sample 2 features Sample 1 featuresSample 2 features 
mapped onto Sample 1

Sample 1 features 
mapped onto Sample 2

Figure 6.35: Cross mapping features between intermediate cuneiform bone samples.



152

Face 1 Face 2

Figure 6.36: Geometry and mesh representation for two face scans.

6.5 Face Scan Comparisons

Figure 6.36 shows two face scans with expanded views of the surface mesh. On the

left is a high resolution scan with 8863 vertices and 17479 faces. The scan on the

right has 3032 vertices and 5920 faces. This results in 27 and 9 features respectively

for Face 1 and 2. Figure 6.37 shows these features (left and center) and the alignment

they produce (right). The best alignment was number 10 of 744 tested with 35802

possible alignments pruned.

6.6 Discussion

Even with only ten to twenty features identified for each object, the number of possible

alignments is large. Limiting the number of candidate feature pairs and geometric

pruning reduce the number of possible alignments to be tested, but this can still be

a large number. Our experience has shown that since the pairs are ordered, the best

alignment is always found early in the process. This provides justification for reducing

the limit on the maximum number of alignments to be tested. It is statistically likely

that if we tested enough other alignments, even if alignments were picked at random,

we might find one that better aligns the reference points. However, it is not likely
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Face 1 features
Feature-based alignment
(Face 1 – orange, Face 2 – blue)Face 2 features

Figure 6.37: Features detected for the two face scans (left and center) and the
alignment based on these features (right).

that the alignment would be significantly better that an alignment based on the most

prominent features of the objects.

We experienced one case where our method failed to align two coarse bone samples

due to an insufficient number of features. This circumstance is easy to detect, and

can be overcome by providing additional features. These features could be generated

using extrema in scale space to detect salient features [100] or using the scale-invariant

feature transform (SIFT) from a difference of Gaussian function [106]. Our similarity

measure can be used to order potential feature pairs by their similarity, independent

of how the features are identified.

Since the method proposed here aligns based on the best corresponding pairs, it is

less susceptible to individual outliers, however more detailed assessment of the impact

of outliers is still needed.

6.6.1 Timing

Execution times for the steps in the shape matching process applied to several example

cases are presented in Table 6.1. The computation of curvature, the curvature map,

detecting features, and computing the spherical parameterization can all be performed

as a preprocessing step. The total preprocessing time for the example cases ranges
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from sixteen seconds to about three minutes on a 1.7 GHz Intel Pentium M processor

with 2.0 GB of RAM. The curvature calculation is O(n), where n is the number of

vertices. The curvature map calculation is O(nk), where n is the number of vertices

and k is the number of vertices within the curvature map radius, which in turn

depends on the size of the curvature map radius and the resolution of the mesh.

Feature calculation time is based on the speed of the graph-cut algorithm, which is

approximately linear in n.

The speed of the alignment step depends primarily on the number of features, as seen

in the radius case. The initial matching is efficient due to the pruning of the potential

alignments. The time is still dependent on the limits set for pruning, the number of

features considered, and the number of alignments tested. More aggressive choices

would seem reasonable based on our limited experience.

Refinement method 2 is much slower than the other two refinement methods. This

is due to the much larger number of alignments to be tested. Since the other re-

finement methods seem to provide comparable improvement of the initial alignment,

use of method 2 is not recommended. The initial alignment combined with the fast

refinement techniques generates alignments that compare well with ICP alignment,

and overcome the ICP requirement for a coarse alignment as a starting point.

The most time consuming of the matching steps are computing and adjusting the pin

points, and generating the point-to-point correspondence from the spherical param-

eterizations. However, even matching our largest example case required only about

three minutes to compute, ignoring refinement method 2 which we recommend skip-

ping. Relative to these execution times, the time required for shape comparison based

on the point-to-point correspondence is inconsequential.

6.6.2 Scaling

Our method is not formally scale independent. In fact, it can be important to be

able to detect changes in scale as well as shape. As a result, we have not set scale

independence as a goal.
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The relative scale of the objects impacts two areas. First, the magnitude of the

mean and Gaussian curvatures is a function of the overall scale of the objects. The

curvatures then affect the computation of the curvature map. The curvature map is

also a function of the curvature map radius, which will depend on the scale. Similarity,

which is a function of the curvature map, will also depend on the scale of the object.

The second area impacted by the relative scale of the objects is the tolerance used

for geometric pruning. For small relative differences in scale, the geometric pruning

constraint parameter may be sufficient, and matching will not be significantly affected.

If necessary, the geometric constraint can be loosened, which decreases the pruning

effect, thereby increasing the time searching for the best correspondence. As long as

the object sizes are not too different, the position of the feature pairs in the priority

list should not change drastically. If the geometric constraint is too restrictive, valid

correspondences may be eliminated.

If scale independence is desired, the primary challenge is to compute shape similar-

ity in a scale independent manner. The features that are extracted are not effected

by the overall scale. If the relative scale factor is known, the curvature data can

be adjusted and matching can proceed using our method. Rigid body scaling can

be estimated by using a more general transformation to align features, and decom-

posing the transformation to get the scaling component. For example, the scaling

and affine transformation options of the ICP algorithm [146] could be used to get an

initial alignment of the objects. The relative scale could then be extracted from the

alignment transformation.

As an alternative, the variation of the curvature map could be constructed using a

scale independent curvature metric. For example, the curvature of a triangular face

can be estimated from the normal vectors at its three vertices. These normal vectors

are independent of the scale of the object. The area and radius associated with the

curvature map would also need to be normalized in some manner.
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6.7 Chapter Summary

This chapter uses the shape similarity measure along with identified features to align

objects and compute their point-to-point correspondence. The alignment method

benefits from the robustness of the curvature map and the multi-scale feature detec-

tion approach. Efficient alignment is the result of geometric pruning of the possible

possible triples of feature pairs, features ordered by strength, and the ordering of

potential feature pairs based on similarity. Pruning limits testing of alignments to a

fraction of the possible alignments.

The alignment process can operate on genus zero surfaces. It can also operate on

meshes that have boundaries, having been trimmed at possibly different locations, by

repairing the mesh before continuing with shape matching.

From the initial alignment and the identified features, pin points are determined that

are used to align the spherical parameterizations for each object. These pin point

locations are adjusted to improve the shape similarity of the corresponding locations.

Additional pin points can be added and adjusted to promote improved similarity

across the correspondence, instead of being controlled only at feature point pairs.

The alignment of the spherical parameterizations defines the point-to-point corre-

spondence. This is demonstrated by mapping the features of one object onto the

other. The point-to-point correspondence could also be used to refine the physical

alignment, possibly taking into account scaling or affine transformations. The next

chapter will look at some other ways to use the correspondence to examine the shape

differences.



158

Algorithm 3 Feature-Based Matching

Phase 1: Preprocessing of object meshes
for all Object Meshes do

if Not genus zero then
Convert mesh to genus zero

end if
Compute curvature at each vertex
Compute curvature maps (from rings and/or fans)
Identify features
Generate a spherical parameterization

end for
Phase 2: Create a coarse alignment of a pair of objects (ObjectA, ObjectB)
Compute similarity between features
Select feature reference points
Sort pairs by similarity
count ⇐ 0
while count ≤ maxcount do

Form triples of potential pairs from ordered list of pairs
if Satisfies geometric constraints then

Compute rigid transformation
Compute alignment quality as sum of all reference point distances to the near-
est surface
Keep alignment with minimum distance sum
count ⇐ count + 1

end if
end while
Refine using alternate reference points within the chosen feature pairs (randomized)
Phase 3: Generate refined list of point pairs
Compute an approximate correspondence from the alignment
Find other overlapping features and add a corresponding point pair
Refine pair locations via similarity subject to a stretching constraint
Add additional pairs and refine via similarity
Phase 4: Generate the correspondence between the objects
Generate reference locations on the spherical parameterization for each point pair
Triangulate the reference locations and point pairs (A, B) in the common, ObjectA,
and ObjectB domains respectively to form a common base mesh and corresponding
local base meshes
Map each original spherical parameterization to the common parameterization us-
ing its local base mesh
The common spherical parameterization provides correspondence between points of
ObjectA and ObjectB
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Chapter 7

Quantifying Shape Differences

This chapter addresses the problem of identifying local and global shape differences.

In order to describe the differences between our aligned objects, we need to differen-

tiate between:

• Regions where the shapes are similar,

• Regions where the shapes are different,

• Likely locations of anomalies, such as features that grow/shrink, appear/disappear,

or shift in location.

7.1 Shape Comparison Goals

We are applying shape comparison to a class of shapes that have few well-defined

features. There are many nuances and subtle differences that can be classified only

by a domain expert. One of our goals is therefore to help the domain expert find the

shape features that are most likely to be of interest.

To be useful, our shape comparison method must include both analysis and visual-

ization components. It should be easy for a user to apply the analysis and see the

similarities and differences for the surfaces.
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7.2 Analysis and Visualization Approach

The approach presented here builds on the initial alignment and the point-to-point

correspondence computed in Chapter 6. We define several shape difference measures

based on physical distances, local orientation angles, and shape similarity. The point-

to-point correspondence enables these shape difference measures to be used to analyze

corresponding points on the objects.

The visualization technique that we use is pseudo-coloring to represent a scalar prop-

erty on the surface, where the scalar property is one of the shape difference measures.

Thresholds are used to control the lower and upper bounds of the range over which

the shape difference measures are displayed. Automatic detection of a threshold is

outside the scope of the current activity, but is a future direction to pursue.

We can also generate statistics, such as maximum and average distance, or vector

displays, which indicate the relationship between corresponding points. However,

vector displays can be very cluttered and confusing, and pseudo-coloring is better

able to convey where the surfaces differ.

7.3 Shape Difference Measures

No single measure captures the 3-D shape difference, so a set of measures is used to

convey the difference between objects. Each measure may detect different qualities

of the shape differences and may have different limitations.

The measures are defined as functions over the surface. Each of the shape difference

measures is applied to pairs of corresponding points. We do not establish a mutually

consistent mesh triangulation, so vertices in one mesh map to (possibly) a point in a

face of the other mesh. For visualization purposes, we evaluate the measures at just

the vertices of the mesh.

In addition to using the correspondence between the objects, the distance and angle-

based measures also use the physical alignment, and can therefore depend on the rigid
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alignment chosen. The similarity-based difference measure uses only the correspon-

dence, and therefore is not impacted by the physical alignment of the objects.

The distance and angle-based measures are based only on the relative location and

orientation of the corresponding points in some aligned position. Therefore, the region

of comparison is just the point. The similarity measure has an associated radius that

represents the size of the region of comparison. This variable region of comparison

enhances the ability to assess the difference between shapes.

7.3.1 Distances Between Corresponding Points

We look at three distance measures that can be applied to corresponding points. The

first is the absolute distance measure. This is the Euclidean distance between a point

and its corresponding location, applied to the surfaces in their aligned state. It is

most useful for detecting missing or moved features. The primary limitations, as with

all of the distance measures, is a dependence on the alignment of the surfaces.

The other two distance measures are derived by breaking the absolute distance into

normal and tangential components. The sign of the normal component indicates

whether the corresponding point is inside (negative) or outside (positive) the object.

This is useful in detecting if features grow or shrink. In addition to dependence on the

alignment, its usefulness may be limited if the magnitude of the tangential component

is large. The tangential distance is a better indicator of whether features occur in

different locations in the objects.

Figure 7.1 shows the alignment and distance measures for the lunate dataset. For

reference, the maximum dimension for the lunate is about 17.5. The absolute distance

measure (top center) shows four areas with the largest distances. The absolute,

normal, and tangential distance measures together help identify where major regions

are inside (a), outside (b), or misaligned (c) relative to the other surface.

Figure 7.2 shows distance measures for the ulna. The maximum dimension in this

case is about 18. The two views on the left show the absolute distance, while the

center right and right views show the normal and tangential distances respectively. In
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Absolute 
distance

Tangential 
distance

Lunate alignment 

(Lunate 1=orange, Lunate 2=blue)

Max dimension = 17.5 
Normal distance 

(Lunate 1) 
Normal distance 

(Lunate 2)

a

c c

bb

Figure 7.1: Distances between corresponding points for the aligned lunate surfaces.
The distance measures can identify where one surface is (a) inside, (b) outside, or

(c) misaligned with respect to the other surface.
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2.0

1.0

1.0

0.0
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3.0
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0.0Absolute 
distance

Tangential 
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Normal 
distance

Figure 7.2: Distances between corresponding points for the aligned ulna surfaces.
The maximum dimension is approximately 18.



163

1.0

0.0

-1.0

5.0

3.0

1.0

3.0

0.0

-3.0Absolute 
distance

Normal 
distance

Radius bone
Intermediate cuneiform 

normal distance

Figure 7.3: Distance measure for corresponding points of the radius and
intermediate cuneiform surfaces. The maximum dimensions are approximately 31

for the radius and 37 for the intermediate cuneiform bone.

this case, the normal and tangential distance measures give more specific indication

of local differences.

The scale for the absolute distances goes from 1.0 to 3.0 to highlight the differences

on the surface. Areas where the absolute distance is less than 1.0 will be blue, and

areas greater than 3.0 will be magenta. If the aligned surfaces intersect, the absolute

distance is zero, however, there may not be any vertex that falls exactly at a zero

location.

Figure 7.3 shows absolute (left) and normal (center) distances for the radius and

normal distances for the intermediate cuneiform bone (right). The maximum dimen-

sion for the radius and intermediate cuneiform samples are approximately 31 and 37

respectively. The normal distance is best able to detect the change in the ridges of

the radius. The negative normal distance for the intermediate cuneiform bone is an

indicator of a feature missing from the corresponding object.

7.3.2 Change in Surface Normal

Figures 7.4 and 7.5 show the angle between the surface normals at corresponding

points for the lunate, radius, and intermediate cuneiform bone samples. This angle

highlights where the surface orientation of one object changes with respect to the
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Lunate 1 
normal angle

Lunate alignment        
(Lunate 1=orange, Lunate 2=blue)

Lunate 2 
normal angle

Degrees

Figure 7.4: Differences in surface normal for corresponding points for the aligned
lunate surfaces.

5.0

3.0

1.0

Radius bone

6.0

4.25

2.5

Intermediate cuneiform bone

degreesdegrees

Figure 7.5: Surface normal orientation measure for corresponding points of the
radius and intermediate cuneiform surfaces.
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Lunate 1

Lunate 2

Similarity (full range)Surface Similarity (compressed range)

Similar

Dissimilar

Similar

Dissimilar

Figure 7.6: Two lunate surfaces and the shape similarity measure for corresponding
points plotted for two different scalar ranges.

other object. This is likely to occur when a feature occurs in a different orientation

or if a new feature is added.

7.3.3 Similarity-based Shape Comparison

Another scalar property used to color the surface is the local shape similarity. Fig-

ure 7.6 shows the surfaces and similarity for corresponding points of the lunate sur-

faces. The similarity shown here is based on the 1-D curvature map and computing

the similarity for the range up to one half of the maximum curvature map radius.

The maximum curvature map radius is 7 for this case.

The range for the center similarity plots is based on the similarity values for the most

similar and the most dissimilar corresponding pairs of points. The similarity plots on

the right use a compressed range to bring out the most prominent shape changes.

Figure 7.7, 7.8, and 7.9 show similarity values plotted over a range of curvature map

radii for the ulna, radius, and intermediate cuneiform bone surfaces respectively. The
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Similar

Dissimilar

R = Rmax R = 0.5*Rmax R = 0.25*Rmax

Figure 7.7: Shape similarity measure for corresponding points of the ulna surfaces
using different curvature map radii.

R = Rmax R = 0.5*Rmax R = 0.25*Rmax Similar

Dissimilar

Figure 7.8: Shape similarity measure for corresponding points of the radius surfaces
using different curvature map radii.
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R = Rmax R = 0.5*Rmax R = 0.25*Rmax R = 0.1*Rmax

Similar Dissimilar

Figure 7.9: Shape similarity measure for corresponding points of the intermediate
cuneiform bone surfaces using different curvature map radii.

R = 0.5*Rmax R = 0.1*Rmax R = 0.5*Rmax R = 0.1*Rmax
Face 1 Face 2

Similar

Dissimilar

Figure 7.10: Shape similarity measure for corresponding points of two face scans
using different curvature map radii.

maximum curvature map radii for these cases were 5 (ulna), 8 (radius), and 10 (in-

termediate cuneiform). The radii for the similarity plots shown range from 0.1 to 1.0

times the maximum curvature map radius. The larger radii tend to highlight changes

over larger regions of the surface, while smaller radii highlight more local shape differ-

ences. The two views in the center of Figure 7.9 illustrate how an appropriate radius

can make certain shape differences stand out.

Similarity plots for two face scans are shown in Figure 7.10. The maximum curvature

map radius is 2 for this case. The correspondence for this case was computed from

the physical alignment rather than a spherical parameterization. As a result, more

artifacts can be seen, for example in the forehead of Face 1. However, the effect of the

different curvature map radii still apply, with the larger radius detecting changes in
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larger regions such as the eyes, and a smaller radius highlighting many more smaller

shape differences.

7.4 Chapter Summary

Several shape difference measures have been applied to the point-to-point correspon-

dence between objects. Visualization of these measures can highlight both small and

large regions where the shapes of the objects differ.

The distance measures have a strong dependence on the alignment. As a result,

the distance measures are not easy to interpret where regions do not align well.

The difference in angle between surface normals at corresponding points appears to

be influenced less by the alignment, while the similarity measure is independent of

the physical alignment. Naturally, all of the measures rely on the quality of the

correspondence provided.

The locations where the shape difference is the greatest tend to dominate. Controlling

the curvature map radius for the similarity calculation gives some additional control,

but it may also be useful to add clipping to turn off visualization of parts of the

surface that are outside the upper and lower thresholds. However, the measures

presented are useful for highlighting both similarities and differences for the objects

being compared.
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Chapter 8

Conclusions

8.1 Research Summary

This dissertation demonstrates an approach for detailed shape comparison based on

establishing a point-to-point correspondence between three-dimensional objects rep-

resented by meshes. We develop a new shape representation that is sensitive to subtle

shape differences. This shape representation is used to compute shape similarity and

to detect features of the objects. The features and similarity measure are used to

create a consistent parameterization of the objects that in turn defines the correspon-

dence. The fact that the final correspondence does not rely on a physical alignment

of the objects is a key benefit.

The primary contributions of this research are in the areas of curvature estimation,

shape similarity measures, feature detection, and alignment and parameterization.

In the area of curvature estimation, this research quantifies the effects of the mesh

structure or quality, as well as noise, on the accuracy of existing curvature estimation

methods. A suite of cases was developed to evaluate curvature estimation methods,

particularly their sensitivity to mesh issues and noise. Evaluating existing curvature

methods using this suite yields insight into the issues that are present in real cases.

This evaluation process is especially important for investigating the claims of new

methods as they are proposed.

Based on the real world issues of noise and mesh quality, we proposed curvature

calculation using an N-Ring fit with a natural parameterization. This technique is
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robust to noise, and avoids the danger of folding which complicates the choice of the

projection direction required for some other fitting methods.

Our contribution in the area of shape similarity measures is the curvature map, a

new curvature-based shape descriptor that represents the shape at a point in its local

context. The 1-D versions of the curvature map can be compared quickly and require

minimal storage. It is easy to vary the size of the region over which the maps are

compared. The 2-D version of the curvature map, which is based on geodesic fans,

can be used when a more discriminating similarity measure is required. The curvature

map has been shown to be useful for feature detection, for assessing the similarity of

corresponding points, and for assessing the similarity of pairs of features.

This research provides a feature detection technique well-suited to our shape matching

goals. The technique provides multiscale feature detection using curvature maps and

the min-cut/max-flow algorithm. It primarily detects strong mean curvature features.

Features can be ranked based on a strength associated with each feature. Most

importantly, this is a fully automatic method.

The alignment technique presented in this dissertation is based on object features and

is independent of the initial orientation of the objects. Pruning based on geometric

constraints, feature strength, and the similarity of potential feature pairs makes the

process very efficient. Even though many possible alignments are tested, in our expe-

rience the best alignment is always found early in the process. Pruning limits testing

of alignments to a fraction of the possible alignments.

The alignment also does not depend on the genus of the surfaces. For open surfaces,

the alignment and the resulting physical correspondence can be used to extract the

common portion of the objects being matched.

We generate the correspondence for genus zero surfaces using a spherical parameter-

ization. From the initial alignment and the identified features, pin points are deter-

mined that are used to align the spherical parameterizations for each object. These

pin point locations are adjusted to improve the shape similarity of the corresponding

locations. Additional pin points can be added and adjusted to promote improved

similarity in regions where no feature pairs are located. Using similarity to adjust the

parameterization is an important factor in generating a useful correspondence.
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Three-dimensional shape matching and analysis is challenging. The new curvature-

based shape matching technique presented in this dissertation is able to distinguish

and measure differences between similar shaped objects. This shape matching tech-

nique has been demonstrated on data from scans of several bone samples. It pro-

vides greater detail about the differences between objects, which is not available from

existing methods. This technique has also been shown to be robust to resolution

differences.

8.2 Ideas for Future Work

A logical follow-on to this work would be to extract information about regions from the

point-to-point shape similarity data. Here, the graph cut approach used for feature

detection might be applied to the shape difference measures to identify regions that

can be classified based on the distance, orientation, and similarity properties.

Calculating the correspondence between objects of genus zero relies on the ability to

generate the spherical parameterization of each object. Improving the robustness of

the spherical parameterization algorithm would increase the overall robustness of this

approach. The method could also be expanded to higher genus by parameterizing

with an n-holed tori, or to surfaces homeomorphic to a disk by parameterizing with

a subset the plane.

It is generally beneficial to have a small number of ordered features, but occasionally

not enough features are present. An alternate technique could be used to supply

additional features when necessary, for example the scale invariant feature transform

(SIFT) [87].

Our shape comparison approach could also be extended to account for scale variation.

There are other measures of curvature, for example based on the angle between surface

normals at the three vertices of a triangular face, which are independent of scale. Such

curvature measures might be adapted to generate a scale independent curvature map

that could be used for shape comparison.
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zation of closed surfaces for parametric surface description. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition CVPR 2000,
volume 1, pages 354–360. IEEE Computer Society, June 2000.

[144] S. Rachev. The monge-kantorovich mass transference problem and its stochas-
tical applications. Theory of Probability and Applications, 29:647–676, 1985.

[145] Szymon Rusinkiewicz. Estimating curvatures and their derivatives on triangle
meshes. In 2nd International Symposium on 3D Data Processing, Visualization
and Transmission (3DPVT 2004), pages 486– 493, September 2004.



185

[146] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In
Third International Conference on 3D Digital Imaging and Modeling (3DIM),
pages 145–152, June 2001.

[147] Shadi Saba, Irad Yavneh, Craig Gotsman, and Alla Sheffer. Practical spherical
embedding of manifold triangle meshes. In SMI ’05: Proceedings of the Interna-
tional Conference on Shape Modeling and Applications 2005 (SMI’ 05), pages
258–267, Washington, DC, USA, 2005. IEEE Computer Society.

[148] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Tex-
ture mapping progressive meshes. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages 409–
416, New York, NY, USA, 2001. ACM Press.

[149] Peter T. Sander. Generic curvature features from 3-d images. IEEE Transac-
tions on Systems, Man, and Cybernetics, pages 1623–1635, November 1989.

[150] John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. Inter-surface
mapping. ACM Trans. Graph., 23(3):870–877, 2004.

[151] S. Sclaroff and A. P. Pentland. Modal matching for correspondence and recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(6):545–561, 1995.

[152] I.O. Sebe and G.Q. Chen. A novel affine template matching method and its
application to real-time tracking. In STMicroelectronics Technical Report, San
Diego, October 2002.

[153] L. Shams, M. J. Brady, and S. Schaal. Graph matching vs mutual information
maximization for object detection. In Neural Networks, 14(3), pages 345–354,
2001.

[154] L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact matching.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(9):504–
519, 1981.

[155] A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangula-
tion flattening. In Proc. 9th International Meshing Roundtable, pages 161–172,
2000.

[156] A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing
using angle based flattening. In Engineering with Computers, 17 (3), pages
326–337, 2001.

[157] A. Sheffer and E. De Sturler. Smoothing an overlay grid to minimize linear
distortion in texture mapping. ACM Trans. Graph., 21(4):874–890, 2002.



186

[158] Christian R. Shelton. Morphable surface models. Int. J. Comput. Vision,
38(1):75–91, 2000.

[159] H.-Y. Shum, M. Hebert, and K. Ikeuchi. On 3d shape similarity. In Proc. IEEE
Computer Vision and Pattern Recognition, pages 526–531, 1996.

[160] Kaleem Siddiqi, Ali Shokoufandeh, Sven J. Dickinson, and Steven W. Zucker.
Shock graphs and shape matching. In ICCV, pages 222–229, 1998.

[161] Richard Southern, Patrick Marais, and Edwin Blake. Wavelets for multi-
resolution analysis of triangular surface meshes. Technical Report CS00-11-00,
Computer Science Department, University of Cape Town, 2000.

[162] Lucio De Souza. Similarity-based versus template matching-based methodolo-
gies for image alignment of polyhedral-like objects under noisy conditions. In
Proc. X Brazilian Symposium on Computer Graphics and Image Processing,
1997.

[163] Carsten Steger. Subpixel-precise extraction of watersheds. In ICCV (2), pages
884–890, 1999.

[164] E. M. Stokely and S. Y. Wu. Surface parameterization and curvature measure-
ment of arbitrary 3-d objects: Five practical methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 833–839, August 1992.

[165] Martin Styner, Kumar T. Rajamani, Lutz-Peter Nolte, Gabriel Zsemlye, Gábor
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