Image-space Constraints for Controlling Camera Interpolation

Ross Sowell, Tom Erez, Emily Feder, Cindy Grimm
Washington University in St. Louis *

Jianqi Xing
Illinois Institute of Technology

Leon Barrett
University of California, Berkeley ¥

ol

®

Screen
constraints

atpima scaie [pom

1

e e |_concs | [oowe.

: 5

ese
ese
.

View direction
constraints

e oesanon | _cance | [vons.

Animation with constrained camera motion

Animation with static camera

Figure 1: Specifying a camera motion using in-screen constratins. Top row: (Left) The user specifies the path the horse should take using
the spline curve (red dots). They use the blue circles to specify that the horse starts out big and gets small. (Middle, Right) The user also
specifies the desired viewing direction at two other points in time. Middle row: The original animation viewed with a camera motion that
meets the user’s constraints. Bottom row: The original animation sequence viewed with a static camera.

Abstract

This paper presents a novel interface for using image-space con-
straints to control camera interpolation in animation sequences.
Traditional camera control can be challenging because the user
must envision how the camera should be positioned in order to place
the objects on the image plane the way they want. While it is fairly
simple to place an object in the center of the scene and rotate the
camera around it, more complex camera motions that involve both
view direction change and motion of the object across the screen
can be very difficult to envision and implement with smooth mo-
tion. In contrast, we provide a simple interface that allows the user
to directly draw out the trajectory, size, and orientation of an object
on the screen, while the system automatically solves for a sequence
of cameras that satisfies those constraints. Unlike previous image-
space constraint approaches, we use a constraint vocabulary which
is both easy to use and produces more stable solutions.

CR Categories: 1.3.6 [Methodology and Techniques]: Interac-
tion techniques; 1.3.7 [Three-Dimensional Graphics and Realism]:
Animation

Keywords: camera control, keyframing, image-space constraints

*e-mail: {rsowell, etom, eafeder, cmg} @wustl.edu
Te-mail: jxingl @iit.edu
fe-mail: Ibarrett @eecs.berkeley.edu

1 Introduction

Camera keyframing is an integral part of the animation making pro-
cess. The animator places the camera in a sequence of “key” po-
sitions, and the computer produces a set of intermediate camera
locations that interpolates between these keyframes. This approach
has several benefits. First, the animator only has to specify a small
number of camera positions. Second, the interpolation produces
smoother motions than hand-placement does. Third, the timing
and number of output frames can be adjusted independently of the
keyframes themselves.

Camera keyframing traditionally treats the camera as just another
3D object in the scene, with intermediate frames produced by inter-
polating the position and focal point of the camera in space. Unlike
a 3D object, however, the camera’s role is to project the 3D scene
into 2D. The animator indirectly controls the projection — how ob-
jects in the scene are placed in the 2D image — by adjusting the
camera parameters for each keyframe. Automatic 3D camera in-
terpolation adds yet another layer of indirection. The net effect
is that the animator must solve a complicated inverse problem in
order to move objects across the 2D scene in the desired manner.
Figure 7 shows an example where the animator wanted the table
to move down and across the scene while moving the view to the

top of the table. Traditional interpolation rotates the table out of
the view. Correcting this using traditional approaches requires the
addition of a substantial number of keyframes which in turn reduce
the smoothness of the motion.

Image-space constraints [Blinn 1988; Gleicher and Witkin 1992]
were introduced as a solution to the inverse problem. The anima-
tor specifies the desired image-space constraints (this object should
be here) and the system solves the inverse problem to determine
the correct camera path. Unfortunately, except for a few types of
animations (flying around an object, panning across a scene), this
approach is unstable and difficult to control [Barrett and Grimm
2006]. There are several reasons for this, but one of the primary
problems is that there are multiple ways to move the camera in order
to account for changes to the image-space constraints. If the image-
space constraints are relatively simple (translation across the image)
the system behaves well, but for more complicated constraints, such
as a rotation plus a translation, the resulting camera paths are jerky,
or may pass through un-intuitive camera positions.

We expand on the spirit of Gleicher and Witkin’s work to provide
a more usable interface, a direct solve in the case of a single ob-
ject, and a robust solver when the user wishes to control multiple
objects. Our interface has the notion of a keyframe, but instead of
specifying an entire set of camera parameters, the animator spec-
ifies one (or more) image-space constraints — the object must be
here, it must be this size, and this is the view direction. To deter-
mine where the camera is for any intermediate frame, the system
interpolates these constraints then solves for a camera that meets
them, while producing a smooth camera path. The interpolations
can be visualized, and edited, in the image plane in order to control
what happens between the keyframes as well.

Traditional camera interpolation works well for a certain class of
animations, such as following an object or panning over a scene.
Our interface can, of course, be used to make these traditional cam-
era motions, but its real strength is that it makes it easier to specify
camera motions where the traditional camera actions (look at that
object, pan across the scene, etc.) do not apply.

Contributions: Our first contribution is an in-screen camera ani-
mation interface (Section 3). This interface has been incorporated
into Alice [Alice 2010]. Second, we suggest a more natural set
of constraints or controls. These controls have the added benefit
that they do not result in as many ambiguities as pure point or line
constraints do. Third, for the case of constraining a single object,
we can directly build a camera motion that meets those constraints
(Section 4). Forth, we present a general solver, based on a local
trajectory optimization approach called Differential Dynamic Pro-
gramming (DDP) [Jacobson and Mayne 1970] to solve for a cam-
era motion path (Section 5). The DDP approach tends to produce
physically-plausable motions by minimizing acceleration energy.

2 Related Work

Traditional 3D key framing requires interpolation of position, ori-
entation, and the intrinsic camera parameters. The position and
intrinsic camera parameters are easily interpolated using linear
weights. Shoemake [Shoemake 1985] introduced quaternion inter-
polation for rotations. Barr et. al. [Barr et al. 1992] expanded on
this idea to produce spline-style interpolations between two quater-
nions. Kem et. al. [Kim et al. 1995] describe how to blend between
more than two quaternions, essentially treating each quaternion as
a control point on a c? spline. Alexa [Alexa 2002] and Hofer and
Pottman [Hofer and Pottmann 2004] both offer general-purpose
methods for interpolating rigid body motions, and Hawkins and
Grimm [Hawkins and Grimm 2007] showed that Alexa’s method

can be adapted to direct interpolation of keyframes, even for se-
quences containing both rotation and center of projection changes.
However, none of these methods give the user any control over the
intermediate frames that are generated automatically.

Various systems have been proposed for semi-automatic or auto-
matic control of the camera. Drucker and Zeltzer [Drucker and
Zeltzer 1995] proposed a system, based on cinematic rules, for
determining the sequence of camera shots in a virtual conversa-
tion. The individual camera shots had pre-defined locations for the
camera; the system largely focused on rules for switching between
them. He et. al. [wei He et al. 1996] expanded on this idea, al-
lowing the individual camera shots to alter the 3D scene slightly to
better frame shots. Tomlinson et. al. [Tomlinson et al. 2000] allow
the characters themselves, and the evolving story line, to play a role
in creating the camera shots. They model the camera as a 3D object
attached to the characters via a system of springs and dampers —
although the placement of the camera for a particular shot-type is
still pre-defined, the dynamics allow some control over the “emo-
tional” content in the camera motion. All of these systems rely on
having a small set of (possibly parameterized) pre-defined camera
shots to use as building blocks — they do not allow general camera
placement. We are interested in creating novel camera paths from
with arbitrary object placement and view direction.

Blinn [Blinn 1988] pioneered the use of image constraints for cam-
era fly-bys. His approach used the “look at” camera model and con-
straints that were natural in that model (e.g., center the view on that
planet). Gleicher [Gleicher and Witkin 1992] presented a more gen-
eral approach based on existing Inverse Kinematics solvers. The ex-
amples in the paper were primarily under-constrained and used an
additional set of soft constraints to minimize changes to the camera
from frame to frame. The experiments of Barrett and Grimm [Bar-
rett and Grimm 2006] found that this solver tends to get stuck in
local minimum, especially when the constraints are not satisfiable.
The overall error also tends to increase over time, especially if, at
any point in the sequence, the constraints are not satisfiable. We
provide a more robust solver and a more controllable interface. We
allow all the camera parameters (or a specified subset) to change,
rather than just the position and orientation, and we allow an ob-
ject’s position, size, and orientation to be controlled separately,
rather than using a single set of point or line constraints to handle
all three attributes.

Computer vision researchers have developed many techniques for
recovering camera parameters from projections of known points.
Early work focused on planar [Zhang 1999] or conic [Song 1993;
Wang et al. 2003] calibration patterns. More recently, linear and
non-linear techniques for non-planar patterns have been devel-
oped [Triggs 1999; Reid et al. 2003; Nister 2003]. In all of these
approaches the intrinsic parameters are assumed to be fixed across
the sequence, and only pose parameters (rotation and translation)
are recovered per frame. These techniques are primarily concerned
with stability (with respect to small perturbations of the tracked
points) and accuracy of projection on a frame-by-frame basis; they
are not concerned with ensuring visually smooth camera paths. We
also have explicit orientation constraint and size constraints, not
just point constraints (and usually not sufficient point constraints for
standard pose recovery). For these reasons we use a solver that can
incorporate more general constraints and attempts to find smooth
motions (Section 5).

3 User Interaction

The input to our interface is a 3D animated scene. We use Alice for
most of the examples in this paper, but any 3D animation software
could be used. The user first creates an animation in Alice, then

Time slider =%

d) New size constraint

e) Changing size constraint

sausnascue | oome

sausnascue | ome

f) New view constraint

st e ovesisten | Conce | [owe

g) After trackball edit

Figure 2: (a) The initial trajectory for a horse walking left to right across the screen. (b) Two position constraints (red dots) are added to
the trajectory. (c) The first constraint point is moved down, and the second up, to manipulate the path the horse will take on the screen. (d) A
size constraint (blue dot) is added halfway through the animation. (e) Increasing the radius of the circle increases the size of the horse on the
screen in the middle of the animation. (f) A view direction constraint (green dot) is added. (g) Using the trackball, the view direction is set
to obtain a front facing view of the horse, causing the horse to rotate to face the viewer 3/4 of the way through the animation, after which it

rotates back.

brings it into our interface to create a camera motion. Our interface,
shown in Figure 2, has a time slider at the top, and three rows (red,
green blue) with dots to indicate the temporal location of the three
types of constraints (position, size, orientation).

The user begins by selecting an object in the scene. The interface
then shows two red dots, connected by a line, in the screen for the
starting and ending projected screen position of the center of that
object, using the default camera for that scene (see Figure 2(a)).
(The two points may not be the same if the object moves in space
during the animation.) The user can, at any time, “scrub” through
the animation by moving the slider at the top of the interface win-
dow. At this point, the user can start adding in position, size, and
orientation constraints, in any order. To add a constraint, they move
the time slider to the desired temporal location, then select Add
. .. from the menu. New constraint values are always interpolated
from the existing ones.

Position constraints: The position constraints are represented by
2D red dots, which are interpolated with a 2D Hermite spline. The
user creates a new constraint by moving the time slider to the ap-
propriate location in the animation and asking for a new point con-
straint (see Figure 2(b)). They can then grab this point and move
it around the screen (see Figure 2(c)). If points are on top of each
other (the user wants the object to remain in place on the screen)
then the point that is closest to the currently selected time is the one
that is selected.

Size constraints: As with the position constraints, the system au-
tomatically adds in a starting and ending size constraint, based on
the size of the object in the default camera. These constraints are
drawn as circles on the screen, representing the bounding sphere of
the object projected onto the image plane. The user simply grabs
the circle and makes it bigger (or smaller) (see Figure 2(e)). To
create a new size constraint, the user moves the time slider to the
desired location and asks for a new size constraint (see Figure 2(d)).
The sizes are interpolated using a 1D Hermite spline.

View direction constraints: As with the previous constraints, the
system automatically adds a starting and ending view direction.
This constraint is a 3D constraint, and is given by the desired
view direction (stored as a quaternion). Unlike the previous two
constraints, this constraint is not represented by any geometry in

the image plane. Instead, when the user selects a view direction
constraint to edit, the object moves to the center of the screen and
the system enters a traditional trackball mode. The user interac-
tively rotates the object to the desired viewpoint (see Figure 2(f,g)).
When they are done, they click “done” and the view returns to nor-
mal. We use spherical linear interpolation (slerp) [Shoemake 1985]
to interpolate the view direction constraints.

At all times the user can scrub the time slider from left to right and
view their animation with the current camera path. As constraints
are added and changed, the view automatically updates.

Using these simple controls, the user is able to specify the posi-
tion, size, and orientation that the object should have on the screen
over time. Note that the user does not have to specify all three
constraints for every keyframe — each constraint type is interpo-
lated independently. Given these constraints and a time value ¢, our
system interpolates the constraints at ¢, then builds a camera that
satisfies the resulting position, size, and view direction constraints.

In the following section we describe a direct-solve technique that
can be used when constraining a single object. Because the degrees
of freedom (two position, one size, three orientation) are fewer than
the degrees of freedom of the camera, we can always find a camera
that satisfies these constraints. We rely on the fact that the con-
straints change smoothly to produce a camera motion that is also
smooth.

In Section 5, we discuss a general-purpose solver that can be used
when the user wants to control more than one object at a time. In
this case, there may not be a solution, so the solver looks for a
smooth camera path that minimizes the constraint error.

4 Direct solve

In this section we describe our direct solve technique. Each of the
constraint types in the previous section produces a continuous con-
straint parameterized by time. The point constraints are interpolated
with a 2D Hermite curve, the size constraints with a 1D Hermite
curve, and the orientation with spherical linear interpolation. Given
a time value ¢, the direct solver produces a camera that meets those
constraints for that time ¢. For simplicity’s sake, the following dis-

cussion assumes that all of the values are for a given time ¢, and we
drop the t. It should be noted, though, that every input is parame-
terized by time — moving the object changes the object’s centroid,
scaling it changes the bounding sphere, and positioning the default
camera changes the distance.

The solver takes in the object’s 3D centroid, P, its desired 2D loca-
tion p, the radius of the bounding sphere R, the desired 2D radius
r, and the desired rotation () in the form of a quaternion. In ad-
dition, we have (from the original Alice camera) a default distance
from the object to the camera D. (If more than one camera were
specified, we interpolate D between those keyframes.)

The camera is defined in a three-step process. First, the camera is
positioned so that it is looking down the z-axis at the point P, at a
distance || P — (0,0, D)||. Second, the camera is rotated around P
to the desired view direction,). Third, using similar triangles, we
calculate the zoom angle o required to project the bounding sphere
of radius R to the circle r, where o’ and »’ are the initial zoom
angle and the initial 2D radius (projected radius before scaling),
respectively:

a = o — D

Because extreme zoom angles can cause rendering issues, we clamp
a between 10 and 80 degrees. To make up the remainder of the size
change, we move the camera in (makes the object bigger) or out by
scaling the current distance D'

D = DL)

,r./

At this point, the object is centered in the scene, the appropriate
size, and has the desired view direction. The last step is to translate
the camera parallel to the image plane so that P is projected to the
point p on the screen. Place the image plane in space centered at P,
and place p on that image plane. The distance between these two
points is the amount to move.

This solver correctly interpolates the position and size constraints,
but is slightly off on the orientation constraint if the object is shifted
out of the center of view. We have not found this to be a problem in
practice.

5 Multiple objects

This section explains how to solve for a camera motion when there
is more than one constrained object. Unlike the previous approach,
we do not solve for a single camera in isolation, but for the entire
camera sequence at once. This allows us to optimize for both the
constraints and a smooth camera path. We use a solver based on
Differential Dynamic Programming (DDP) [Jacobson and Mayne
1970], a technique from the reinforcement learning literature. DDP
was shown to generate locally-optimal behavior even in the absence
of a reference trajectory [Tassa et al. 2008], and since it approxi-
mates the value function only along a single trajectory, it does not
incur an exponential computational cost in the degrees of freedom.
Furthermore, DDP solves problems of continuous variables, and so
required no special adaptation to address our problem.

To use DDP, we need to turn our constraints into a cost function.
The smoothness of the camera motion is automatically handled by
the way DDP frames the problem — it essentially treats the camera
as a physical object that is moved by forces over time. DDP tries

to minimize applying forces while meeting the constraints at each
time step.

We first describe the camera representation we use, and then the
cost constraints.

5.1 Camera representation

We use the Four-point camera model [Barrett and Grimm 2006]
which is a geometrical representation of a camera comprised of a
point and three vectors (see Figure 3(a)), for a total of twelve pa-
rameters. However, scaling all three vectors by the same amount
results in the same image, so in effect there are only eleven param-
eters, as is the case in the traditional camera matrix [Michener and
Carlbom 1980]. These two models are interchangeable (see [Bar-
rett and Grimm 2006] for details of the conversion) — it’s simply
the meaning of the parameters that changes. The Four-point model
was chosen here because it makes the specification of the image-
space constraints geometrically meaningful, which in turn produces
better-behaved cost functions. The parameters of the Four-point
camera model are as follows:

1. O - the origin of the camera’s coordinate system, or the pin-
hole of the camera.

—

2. F - the vector from O to the center of the film plane.
3. U -the film-plane vector in the x direction (right vector).

4. V- the film-plane vector in the y direction (up vector).

When solving for the intermediate frames, we allow the animator to
specify the degrees of freedom (DOF) of the camera. By default, all
of the parameters are free (11 effective DOF). Optionally, we can
force U and V to be perpendicular by specifying Vasa ninety de-
gree rotation of U about F, effectively eliminating skew (10 DOF).
Forcing |U| = |V/| = aspect ratio eliminates aspect ratio scaling
(9 DOF), and forcing U, V, and F to be mutually perpendicular
eliminates center of projection changes. The latter is enforced by
specifying V in terms of U as before, and then heavily penalizing
values of F that are not perpendicular to U (effectively 7 DOF).

5.2 Cost Function

For simplicity, we define the cost function for a single frame, one
object, and one constraint type. The full cost function is the sum
over all frames and all objects and all constraints. Note that the user
does not need to specify all three constraint types for each object,
nor do they even need to specify the constraint for the entire time
period. Variables are the same as in Section 4.

The cost function takes in the current camera (C = O, F , U , 17)
and produces a measure of how well that camera satisfies the con-
straints.

Trajectory Cost: Given the object’s 3D center P and the desired
screen location p € [—1, 1] x[—1, 1], measure how far the projected
location is from the desired one. Normalize this by the size of the
image plane. First project P onto the plane O + ﬁ7 lj, V to yield
P’ (see Figure 3(c). Then the cost is:

_ 1P’ = (O+ F +p.U+p,V)|

T(C) TP
U1+ [Vl

3

Scale Cost: Given the object’s bounding sphere radius R and a
desired screen size r, measure how much the projection of R onto
the image plane differs from . We use similar triangles to calculate

P,=0+F +0.45U + 0.5V

The camera model , Point P, on the film plaﬁ'e,é

@) ’ (b)

Projecting P onto the filﬁ'r-pjlane

Projecting sphere oﬁ‘t’a__fiilm plane

© (d)

Figure 3: (a) The Four-point camera model is constructed from an eye point, a vector to the film plane, and two vectors which span the film
plane. (b) An image-space constraint p is converted to a 3D point Ps on the film plane. (c) Projecting P onto the film plane (P'). (d) For the
scale constraint, the radius r of the projected circle is found by scaling the radius R of the bounding sphere by the ratio of the distance from

the eye to P’ to the distance from the eye to P.

the difference. Let D be the distance from O to P, and let d be the
distance from O to P’ (P projected onto the image plane). By
similar triangles, we have r’ = %R, yielding:

(r—1')

Ul + vl

“

Orientation Cost: Let @ be the desired quaternion, and Q(C') be
the actual quaternion of the input camera:

R(C) = (1+ < Q,Q(C) >)/2 ©)

All three cost terms are normalized so that they are (roughly) be-
tween zero and one, with zero being satisfied. Obviously, one con-
straint can be made stronger by weighting that cost term more.

We have verified that, in the case of a single constrained object,
this solver meets all of the constraints. Although this general solver
is mostly intended to be used with multiple objects, it can also be
used with a single object when the user wishes to control the in-
ternal parameters of the camera (eg center of projection) through
keyframing (Section 6.2).

Like all solvers, DDP performs best if the starting condition is close
to the optimal solution. For the starting camera trajectory, we use
our direct solver with one of the constrained objects. As a check on
the solver, we have also initialized the solver with a variety of other
starting conditions (traditional keyframe interpolation, linearly in-
terpolating the four-point camera values) and it still converges, just
much slower (3 minutes versus a few seconds).

The computational complexity of the DDP algorithm is linearly de-
pendent on the number of interpolated frames [Liao and Shoemaker
1992]. We used a general-purpose implementation of DDP in MAT-
LAB, and every camera sequence took a few seconds to compute on
a standard desktop computer. While not yet fast enough for fully in-
tegrated user interaction, it is known that the DDP algorithm can be
optimized for a specific domain and achieve dramatic performance
improvement: for example, in [P. Abbeel and Ng 2007], DDP was
brought to perform at a rate of more than 100Hz on a system of
more than 20 dimensions by carefully optimizing the routine to the
particular domain.

6 Results

In this section we provide several examples that illustrate the utility
of our system. Complete animations of these examples are provided
in the accompanying video.

6.1 Alice interface

moveAndOrientTo cameraMarker Green more

horse© Walk 5307, 5025

Oo fogeer
borisTheogre Roar
horse Rear

camers moveAndOrientTo (cameraMatker_Magents moe

Do togetner
horse " turn [LEFT', 5051 mave

amers moveAndOrientTo (cameraiarker_vellow mare.

Do together
horse Walk 530, 5025

amers moveAndOrientTo (cameraiarker_Orangel meave

Figure 5: Recreating the sequence in Figure 1 using traditional
keyframing tools in Alice. (a) The camera is moved about the scene
and camera markers are dropped at the key positions. (b) The ani-
mation script with the ” ‘moveAndOrientTo”’ commands.

¢

Our direct solve system has been integrated into Alice. A user can
load an existing Alice animation, and use our interface to edit the
movements of the camera. In the example in Figure 1, the user
begins with an animation of a horse meeting an ogre. The ogre
roars, causing the horse to rear, and the horse turns and walks away.
By specifying the trajectory of the horse with a simple spline curve,
two size consraints, and adjusting the view direction at two points in
time, the user is able to achieve an interesting camera motion. The
camera starts zoomed in on the horse, with the ogre out of view.
It then rotates behind the horse for the confrontation, and up to a
zoomed-out, birds-eye-view as the horse walks away.

Creating such a camera motion with traditional tools is much more
difficult. Alice provides traditional keyframing by allowing the user
to adjust the camera parameters and save it as a camera marker (see
Figure 5(a)). The user can then invoke a ”‘moveAndOrientTo™
method to force the camera to interpolate to any specified camera
marker. Alice also provides other convenience methods such as
”*moveTo™, ”‘orientTo™’, ”‘lookAt”, etc (see Figure 5(b)). These
tools are fine for simple pans and orientations, but are very diffcult
to use for anything more complex, particularly for novice users. We
made an effort to recreate Figure 1 using the traditional tools. Spec-
ifying and iteratively adjusting five keyframes still did not achieve
the desired effect.

99¢

We ran a (very) informal user study where we asked people to make
an animation, then create a camera motion both with our interface
and Alice’s camera editing tools (see Figure 6). Users were able
to create camera motions using both systems. They commented,
though, that our interface was more intuitive. Our users varied on

Figure 4: Two sequences constructed from the same keyframes as in Figure 7 (3 key frames — highlighted in red, 120 total frames, 7 DOF
camera model). Top row: The image-space trajectory has been modified so that the table will follow an “S” curve. Bottom row: The scale
constraint has been modified so that the camera will zoom in and then back out during the first half of the sequence, and then zoom out and

back in during the latter half.

how they used the Alice camera controls; some just dropped cam-
eras into the scene, others used the built in camera methods. The
users who dropped cameras commented on how much easier it was
to get something meaningful in our system versus this approach.

Adustma scae | pums Adustma scae | pums

At scais | e

Figure 6: Example scenes created by our users. Bottom right: A
screen shot of editing the Alice camera.

6.2 Traditional keyframing

Although our approach is primarily designed to be used interac-
tively, traditional keyframing can also be used (see Figure 8). In this
case, the user specifies two (or more) keyframes, and one (or more)
objects. The system automatically generates each of the three con-
straints for each of the keyframes, and also interpolates the camera-
to-object distance D (Section 4. Once the constraints are created,
the user is free to edit them or add additional ones.

We use keyframing to demonstrate the well-known special effect
where the camera dollies towards its subject while the lens zooms
out, thus keeping the subject the same size in the frame through-
out. The scene in Figure 8, top row, is a room full of tables, one of
which has a bowl on top of it. The first keyframe shows this table
in the upper left corner. Between the first keyframe and the second
keyframe, the table is rotated and gets larger, while moving toward
the center of the screen. Between the second and third keyframes, a
dolly-zoom is executed, moving the camera toward the marked ta-
ble while zooming out, creating the effect. Traditional interpolation
fails to produce a smooth result in this case (see Figure 8, bottom

row).
6.3 Multiple objects

Finally, we demonstrate the ability of our system to constrain mul-
tiple objects in a scene. Figure 9 (top row) shows a scene with two
tables side by side. The camera begins on one side of the tables,
rotates as it passes overhead, and moves to the opposite side. The
image-space trajectories of the two tables are adjusted so that they
cross paths in the middle of the sequence as they both move from
one side of the screen to the other.

It should be noted that when constraining multiple objects in a
scene, it is possible for the animator to provide a set of constraints
that are not satisfiable (see Figure 9, bottom row). In this example,
the animator has moved the trajectories of the two objects in op-
posite directions at two control points, while leaving the size con-
straint the same. Our solver still returns a result that minimizes the
total cost, but it does not precisely meet either the trajectory or size
constraint.

7 Conclusion

We have presented a novel interface for using image-space con-
straints to control camera interpolation in animation sequences. Our
interface makes it easy for the animator to specify the desired po-
sitions, orientations, and sizes of selected objects in image space,
even if the objects are moving or changing size. We present an in-
teractive, direct solver for constraining a single object, and a robust
general solver for constraining multiple objects and manipulating
internal camera parameters.

8 Acknowledgements

[Removed for blind review|

References

ALEXA, M. 2002. Linear combination of transformations. ACM
Transactions on Graphics 21, 3 (July), 380-387.

ALICE, 2010. Website, http://www.alice.org/.

BARR, A. H., CURRIN, B., GABRIEL, S., AND HUGHES, J. F.
1992. Smooth interpolation of orientations with angular velocity
constraints using quaternions. In Computer Graphics (Proceed-
ings of SIGGRAPH 92), vol. 26, 313-320.

Figure 7: A sequence which has no fixed focus point (3 keyframes — highlighted in red). Top row: Traditional interpolation interpolates the
camera’s 3D position and orientation to produce in-between frames. Since the table is not located at the focus point, the interpolation results
in the table rotating out of the viewing frame in the latter half of the sequence. Bottom row: We use image-space interpolation to interpolate
the table’s 2D position, size, and orientation in the image. It would take the addition of several more keyframes to create a similar result

using traditional interpolation.

A

i 5], 591 45]

Figure 8: Specifying a camera motion using three keyframes. The table rotates and gets larger between the first two keyframes. Both the
distance to the camera and the zoom are changed between the second and third keyframes. Top row: The constraints are automatically
generated from the keyframes. We used the general solver with the 12 DOF camera model and 120 frames. Bottom row: Traditional
interpolation causes the table to rotate out of view and results in a zoom that is not visually smooth (see video).

BARRETT, L., AND GRIMM, C. 2006. Smooth key-framing using
the image plane. Tech. Rep. 28, Washington university in St.
Louis.

BLINN, J. 1988. Where am i? what am i looking at? In /EEE
Computer Graphics and Applications, vol. 22, 179-188.

DRUCKER, S. M., AND ZELTZER, D. 1995. Camdroid: A system
for implementing intelligent camera control. In /995 Symposium
on Interactive 3D Graphics, ACM SIGGRAPH, 139-144. ISBN
0-89791-736-7.

GLEICHER, M., AND WITKIN, A. 1992. Through-the-lens camera
control. In Siggraph, E. E. Catmull, Ed., vol. 26, 331-340. ISBN
0-201-51585-7. Held in Chicago, Illinois.

HARTLEY, R., AND ZISSERMAN, A. 2000. Multiple view geome-
try. Cambridge University press.

HARTLEY, R. I. 1992. Estimation of relative camera positions for
uncalibrated cameras. In ECCV ’92: Proceedings of the Sec-
ond European Conference on Computer Vision, Springer-Verlag,
London, UK, 579-587.

HAWKINS, A., AND GRIMM, C. 2007. Keyframing using linear
interpolation of matrices. Journal of Graphics Tools To appear.
Using linear matrix interpolation to do camera keyframing.

HOFER, M., AND POTTMANN, H. 2004. Energy-minimizing
splines in manifolds. ACM Transactions on Graphics 23, 3
(Aug.), 284-293.

JACOBSON, D. H., AND MAYNE, D. Q. 1970. Differential Dy-
namic Programming. Elsevier.

Kim, M.-J., KiM, M.-S., AND SHIN, S. Y. 1995. A c2-continuous
b-spline quaternion curve interpolating a given sequence of solid
orientations. In Computer Animation ’95.

Liao, L.-Z., AND SHOEMAKER, C. A. 1992. Advantages of
differential dynamic programming over newton’s method for
discrete-time optimal control problems. Tech. rep., Cornell The-
ory Center.

MICHENER, J. C., AND CARLBOM, I. B. 1980. Natural and effi-
cient viewing parameters. In Computer Graphics (Proceedings
of SIGGRAPH 80), vol. 14, 238-245.

NISTER, D. 2003. An efficient solution to the five-point relative
pose problem. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR ’03), vol. 2, 195.

P. ABBEEL, A. COATES, M. Q., AND NG, A. Y. 2007. An appli-
cation of reinforcement learning to aerobatic helicopter flight. In
Advances in Neural Information Processing Systems, no. 19.

REID, G., TANG, J., AND ZHI, L. 2003. A complete symbolic-
numeric linear method for camera pose determination. In ISSAC
’03: Proceedings of the 2003 international symposium on Sym-
bolic and algebraic computation, ACM Press, New York, NY,
USA, 215-223.

2 & [F
R R

Figure 9: Constraining multiple objects (3 positional keyframes — highlighted in red, 120 total frames, 7 DOF camera model). Top row: The
two tables are made to cross paths as they move from one side of the screen to the other while the camera rotates overhead. Bottom row: The
trajectories from the sequence in the top row have been pulled in opposite directions while the size constraint remains the same, yielding a
set of constraints that are not satisfiable. The result is a sequence that minimizes total cost, but does not precisely meet the constraints.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
In Computer Graphics (Proceedings of SSIGGRAPH 85), vol. 19,
245-254.

SINGH, K., GRIMM, C., AND SUDARSANAM, N. 2004. The ibar:
A perspective-based camera widget. In UIST. The first draft of
the IBar.

SONG, D. M. 1993. Conics-based stereo, motion estimation, and
pose determination. International Journal of Computer Vision
10, 1,7-25.

SUTTON, R., AND BARTO, A. 1998. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA.

TASSA, Y., EREZ, T., AND SMART, W. D. 2008. Receding hori-
zon differential dynamic programming. In Advances in Neural
Information Processing Systems 20.

TOMLINSON, B., BLUMBERG, B., AND NAIN, D. 2000. Ex-
pressive autonomous cinematography for interactive virtual en-
vironments. In Proc. of the 4th International Conference on Au-
tonomous Agents, ACM Press, 317-324.

TRIGGS, B. 1999. Camera pose and calibration from 4 or 5 known
3d points. In Proceedings of the 7th International Conference on
Computer Vision, Corfu, Greece, 278-284.

WANG, L., PLESS, R., AND GRIMM, C. 2003. A 3d pattern for
pose estimation for object capture. In Vision Interface, 395-401.

WEI HE, L., COHEN, M. F., AND SALESIN, D. H. 1996. The
virtual cinematographer: A paradigm for automatic real-time
camera control and directing. In Proceedings of SIGGRAPH
96, Computer Graphics Proceedings, Annual Conference Series,
217-224.

ZHANG, Z. 1999. Flexible camera calibration by viewing a plane
from unknown orientations. In ICCV, 666—-673.

