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Abstract Local shape descriptors can be used for a va-

riety of tasks, from registration to comparison to shape

analysis and retrieval. There have been a variety of lo-

cal shape descriptors developed for these tasks, which

have been evaluated in isolation or in pairs, but not

against each other. We provide a survey of existing de-

scriptors and a framework for comparing them. We per-

form a detailed evaluation of the descriptors using real

data sets from a variety of sources. We first evaluate

how stable these metrics are under changes in mesh

resolution, noise, and smoothing. We then analyze the

discriminatory ability of the descriptors for the task of

shape matching. Finally, we compare the descriptors

on a shape classification task. Our conclusion is that

sampling the normal distribution and the mean curva-

ture, using 25 samples, and reducing this data to 5-10
samples via Principal Components Analysis, provides

robustness to noise and the best shape discrimination

results. For shape classification, mean curvature sam-

pled at the vertex or averaged, and the more global

Shape Diameter Function, performed the best.

Keywords Spin images · shape descriptors · mean

curvature · Gaussian curvature · feature detection

1 Introduction

Local shape descriptors are used in 3D shape matching

to find unique points on a surface, to match up points
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on different models, and to define feature vectors that

can be used to classify shapes. They can also be used

to speed up searches by reducing the model to a small

number of features which are easily compared. Given

the plethora of descriptors out there, what works best?

We evaluate that question in two contexts: shape fea-

ture matching and shape classification. Shape feature

matching comes down to the following question: given

sets of “similar” points, how well does the descriptor

do at clustering similar points while distinguishing be-

tween points in different sets? Shape classification looks

at the same problem, but for the distribution of shape

descriptor values across an entire shape.

We first survey existing local shape descriptors, group-

ing them by type (Section 2). Next, we provide a frame-

work for comparing these descriptors against each other.

In the process of doing this, we develop several new vari-

ations of existing descriptors (Section 3). In specific, we

create a rotation-independent version of Point or Spin

descriptors [3] and their variants.

To evaluate the descriptors we perform three stud-

ies. The first study (Section 4) is a straightforward anal-

ysis of behavior under changing mesh quality, noise, and

smoothing. The second study (Section 5) uses hand-

picked similar feature points to determine which de-

scriptors are both sensitive (can determine if features

are the same) and specific (can distinguish one feature

from another). The third study looks at how the shape

descriptors perform for a shape classification task (Sec-

tion 6). We also provide a correlation analysis on the

descriptors (Section 7).

We compare features for both more standard man-

made objects [18] and biological data sets [17], and ex-

tend the analysis in these previous studies to the clas-

sification task.
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Our conclusion is that sampling mean curvature or

the normal distribution at roughly 25 samples per lo-

cal neighborhood, followed by Principal Components

Analysis to reduce the data to 7-10 numbers, are the

two best descriptors in terms of robustness and dis-

crimination power at the feature level. At the object

level (classification task) the Shape Diameter Function

or mean curvature, sampled locally, are the two best

choices.

Contributions: 1) A survey of existing local descrip-

tors. 2) A systematic evaluation of a variety of shape de-

scriptors on different data sets. 3) Rotationally-invariant

modification of Point signatures. 4) Normalized com-

parison functions that allow for direct comparison of

all descriptors.

2 Local descriptors

A good local descriptor is one that is invariant to “unim-

portant” geometric changes, typically rotation and trans-

lation, sometimes scaling, and sometimes bending (such

as posing an articulated character). It should take into

account the local shape of the surface surrounding a

given point. It should also be robust to noise and sam-

pling errors: Geometric noise (vertices moving), Mesh

topology noise (the mesh connectivity changes), and

Global topology noise (the creation of handles and tun-

nels). Local descriptors should also have a meaningful

comparison function, one that scales roughly linearly

with perceived shape change and is robust to noise.

To handle invariance, most descriptors measure ge-

ometric properties that are invariant to translation and

rotation, such as curvature, length, volume, and angle.

Scale invariance requires a relative measure — for ex-

ample, the length of a curve over a radius — or scaling

the object to a default size.

There are, broadly, two ways to determine a local

neighborhood around a point. The first is to use Eu-

clidean distance, for instance, all of the (connected) sur-

face that is contained within a sphere of a given radius.

The second is to use Geodesic distance, for instance,

by walking out a set distance on the surface. Empiri-

cally, we have determined that for small-scale features

the two are qualitatively similar. The difference really

only matters when considering large-scale features such

as entire limbs. At that scale, pose-invariance (a bent

limb should be the “same” as a straight one) can only

be achieved by considering geodesic distances. We di-

vide existing local descriptors into three classes. The

first two only look at local data, the third at global

data. The two local data classes split on whether they

sample a metric locally or fit a model to the local neigh-

borhood.

2.1 Ring-based descriptors (sample metric locally)

Blowing bubbles [24] intersects the surface with a set

of concentric spheres and extracts information about

the surface in two steps. First, they simply count the

number of closed contours, ignoring curves that are far

away (1, 2, or more than 2). They further classify the

contours using the length of the contours and a local

concavity measure that determines if the curve centroid

is above or below the point. Altogether, these measures

can be used to classify the surface into eleven different

groups. These descriptors (length of curve, centroid) are

generalized to an integrative framework in [26].

Geodesic fans [14] sample a metric (such as curvature)

on the mesh using concentric geodesic rings instead of

spheres. Geodesic fans re-sample the metric into evenly-

spaced samples in the radial and angular direction. To

compare two fans, every possible rotation is tried, and

the one with the minimal error is kept. They also in-

troduce a 1D “curve”, where the values around a ring

are collapsed into a single number (average, minimum,

and maximum values). This eliminates the need to try

all possible rotations but does result in a loss of in-

formation. A modified version of this, which combined

curvature along geodesics with normal variation, was

recently used to do polyp detection [25].

Splash descriptor Stein and Medioni [31] sample the

normal at regularly-spaced intervals. The normals are

mapped to a spherical coordinate system using the nor-

mal n0 at the point and a tangent vector t, with t chosen

by finding the point Pi which has the maximum value

of
√
< n0, ni >2 + < t, ni >2. They then map this 3D

curve to 2D by computing the curvature and torsion

along it. It is not clear how necessary (or useful) this

last step is; it was primarily motivated by compatibility

with the rest of their system.

Point descriptor Chua and Jarvis [3] used a similar

sampling, but recorded the distance from the contour

to a plane fit to the contour and passing through the

point. Yamany and Farag [33,34] proposed a modified

version of this where they took a line through the point

on the ring. They then stored the line length and angle

with respect to the normal. They convert this to a 2D

image by using the first angle and length as the axes,

and the normal angle as the image’s intensity value.

They used all points in the mesh for this descriptor;

by weighting the points by their distance to the center

point [1,20] this descriptor can be localized.

2.2 Expanding descriptors (fit model to region)

Fitting polynomials: Cipriano et. al [4] grow their

disks using geodesics. Each disk is then treated as a
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height field over the tangent plane. They fit a quadratic

polynomial to the height field, weighting the points by

their surface area and how close to the center they are.

Because they project their points directly to the tan-

gent plane they may get folding; this is mitigated by a

post-processing step which detects these cases as out-

liers. Finally, they define two descriptors. The first is

the curvature of the fitted quadratic. The second de-

scriptor treats the height field as an intensity image,

and measures the anisotropy of the image. This can be

computed directly from the polynomial coefficients, but

is somewhat less specific than the curvature measures.

Mesh saliency: Mesh saliency [21] uses the concept

of center-surround from perception to measure how the

center of a disk differs from a disk twice as big. Essen-

tially, they sum up a metric (usually mean curvature)

using a Gaussian weighted sum centered at the point.

They then repeat this sum using a kernel twice the size.

The value for the disk is then the ratio of the two sums,

normalized.

Volume and surface area: Instead of measuring deriva-

tive information (eg, curvature) on the surface, an al-

ternative is to measure integrative information, such as

volume [7] or surface area [26]. These measures, being

integrated, are nominally more stable in the presence

of noise than derivative measures. To extract more in-

formation about the local patch it is possible to apply

Principal Components Analysis [5,6]. Pottman et al [26]

provide a nice summary and comparison of these inte-

grative, invariant geometric measures.

2.3 Global and iterative operator descriptors

Smoothing: As a mesh is smoothed, vertices change

their positions. Vertices in high-curvature regions tend

to move more than in low-curvature ones. Essentially,

record the distance moved by each vertex for each smooth-

ing iteration, for some number of iterations. This de-

scriptor is used by Li and Guskov [23] to find interest-

ing points and by the brain mapping community [11]

to identify sulcal folds on cortical surfaces.

Shape Diameter Function: Essentially, measure how

far away the surface is in the opposite direction of the

surface normal [30]. This gives a local measure of the

diameter of the surface at that point.

Geodesics and diffusion: The techniques in this class

do not directly measure the geodesics, but instead mea-

sure a diffusion process flowing along the geodesics. The

Laplace-Beltrami operator [28] is used to compute the

diffusion because it essentially records the mesh con-

nectivity.

Bronstein et. al [2] use diffusion geometry (how long

does it take, on average, to walk from one point to an-

other on the surface using a random walk?) to compare

two surfaces. To turn this into a local descriptor, mea-

sure the average probability of walking from the point

P to all the neighboring points at time t, for increasing

values of t [15]. An alternative is to measure the average

distance to all of the points in the neighborhood [12].

Sun et. all [32] perform a heat diffusion operation on the

surface, and track the accumulated heat at the point

over time.

Comparing two diffusion signatures requires some

care because the values change rapidly for small time

values, then smooth out. For this reason, Sun et. all [32]

sample time using a logarithmic scale and normalize by

dividing by the area under the curve.

3 Shape descriptors

The previous section surveyed a variety of existing meth-

ods for computing local shape descriptors. In order to

compare them, we have developed a unified framework

that attempts to preserve the original metrics and sam-

pling strategies while producing descriptors that can

be meaningfully compared to each other. To address

the comparison problem, we introduce a normalization

step that converts the raw descriptor to the range [0, 1],

accounting for non-linearities in the metric as best as

possible. Additionally, several descriptors have inherent

in them either picking a canonical tangent direction [3,

34] or comparing all possible rotations [35] to produce a

rotation-invariant descriptor. We adopt a different ap-

proach, which is to use a histogram. This captures the

distribution of metric values, but does result in a loss

of ordering information.

We formally define a local shape descriptor as a

mapping from a small subset of the surface centered at

a point P to a vector d of numbers. These vectors can

then be compared to determine how similar two points

are, or used in a classifier. By varying the amount of

surface used, the descriptors can pick out smaller or

larger features. Metric here refers to a value, such as

curvature, calculated at every point on the surface. The

general algorithm for computing a descriptor is as fol-

lows:

1a, Ring and expanding descriptors: For each point

P , sample the metric at R concentric rings or patches

spaced a distance r apart. This produces a vector of di-

mension RS, where S is the number of metric samples

per ring.

1b, Iterative operator descriptors: Apply the iter-

ative operator. Record the values at R iterations, where

each iteration corresponds (approximately) to the oper-

ator expanding a distance r. This produces a vector of
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Fig. 1 Top: The six meshes used in the stability study. Bottom left: Mesh reduction. x-axis is the mesh reduction amount,
y-axis is the difference in the descriptors, averaged across the surface (|| reduced - original ||). Bottom right: Noise and
smoothness. x-axis goes from noisy to smooth (see Sec 4). The meshes were compared to their original mesh of the same
resolution. Curve color indicates level of mesh reduction.

dimension RS for each point P , where S is the dimen-

sion of the output of the operator at point P (usually

S = 1).

2, Reduction: Apply Principle Component Analysis

(PCA) or Multi-dimensional Scaling (MDS) as appro-

priate to all of the vectors, and re-project the vectors

onto this coordinate system.

3, Normalize: Normalize the distribution of values in

each dimension, using a non-linear mapping as neces-

sary, so the values lie between zero and one and are

(relatively) evenly distributed across the range.

Section 3.1 defines the specific descriptors used in

our study. Section 3.2 discusses the coordinate system

change and normalization step.

Sampling the surface: We experimented with three

different methods for sampling the surface: 1) Inter-

secting spheres [24] (Euclidean), 2) Growing disks, and

3) Exponential maps [29] (Geodesic). Empirically, they

all produce qualitatively similar results. For this paper,

we use 1) with r = 0.0375B/R, where B is the diag-

onal of the bounding box of the surface and R = 5.

In general, for surfaces with small, thin structures or

substantial noise we recommend using the intersecting

spheres approach. For surfaces without these features

we recommend the Exponential map approach because

it is faster and does not require a second parameteri-

zation step. We resample metric data evenly along the

rings, at a spacing of 2πr/20. For all three methods the

computation time is dependent on the number of sur-

face points and the average number of points k that lie

within the maximum radius r for each point. Ideally, k

should be between 25 and 50 for n ≈ 5. If the surface

sampling is denser than this, significant computation

time is wasted because the distance between surface
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Fig. 2 Top row: Curvature values, sorted in increasing order
(raw, index, mapped). Red - Mandible, Blue - Tibia, Green
- Ferret. Bottom row: Applying mapping (Section 3.2). Blue
curve is original data, sorted and linearly scaled to the range
[0,1]. Green curve is normalized data. Bottom right: Eigen
values of all descriptors.

samples is much smaller than the distance between the

rings.

3.1 Specific descriptors

An implementation of these descriptors is available at

https://sourceforge.net/projects/meshprocessing/.

3.1.1 Ring-based descriptors:

[DP] Distance to plane: Fit a plane to the ring then

calculate the signed distance of each point to the plane.

[ND] Normal distribution (2 values): 1 - Fit a

plane to the vertex, a point on the ring, and the ver-

tex’s normal. Project the ring point’s normal onto that

plane, and find the angle with the normal. 2 - Fit a

plane to two consecutive points on the ring and the

first point’s normal. Project the second point’s normal

onto this plane. This sampling is rotation-independent.
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Fig. 3 Stability score. For each data set we averaged the L2 norm of the difference between the original and the altered shape
descriptor at each vertex across all 28 meshes, then averaged the results. The descriptors are sorted by this score, normalized by
dividing by the average descriptor norm. We also show the raw score for the three mechanical models and the three biomedical
models.

Curvatures: We use four curvature values, Mean, Gaus-

sian, Shape and Curvature index (SI, CI) [19]. SI and

CI map curvature values to a reasonable range using

arctan and log. We apply an ad-hoc curvature normal-

ization step to the curvatures (see Section 3.2) because

otherwise large values swamp the other ones (Figure 2).

[SDF] Shape Diameter function: Essentially, the

distance to the opposite side surface [30,12].

For the above descriptors we experiment with eight dif-

ferent approaches to sampling the data on the rings:

[VERT] R = 1, S = 1. Just the data at the vertex.

[SAL] S = 1. Saliency sampling [21]. We used the radii

as the center sampling size.

[MIN/MAX/AVG] S = 1. Minimum, Maximum, or

Average of the values on the ring.

[MMA] S = 3. Minimum, maximum, and averaged

values.

[DIST] S = 5. Sort the values. Take the values that

lie at the 0%, 10%, 50%, 90%, and 100% places in the

sorted list.

[HIST] S = 7. Values at 0%, 10%, 30%, 50%, 70%,

90%, and 100%.

[AS] S = 2. Take the average and the standard devia-

tion of the values on the ring.

3.1.2 Expanding descriptors:

[LEN:] Length of the ring over the radius.

[AREA:] Area of the volume in the sphere.

[ANCE:] Uses the ANCE [16] method to calculate the

Mean and Gaussian curvature, using the vertex location

and the re-sampled points of the ring as input.

[FIT:] Fit a degree two polynomial to all of the surface

points inside the ring, plus the resampled ring points,

weighted by distance. Calculate the Mean and Gaussian

curvature from the polynomial. We use Desbrun’s‘[8]

approach to parameterize the surface.

3.1.3 Iterative operator descriptors:

[MOV] Movement. The distance of the vertex from its

original position after applying Laplacian smoothing [9]

three times for each ring.

[HEAT] Heat diffusion [32].

Taking into account the different ways of sampling

the rings, we have 8 + 2× 5 + 5× 9 + 1 = 67 descriptors

(we include a descriptor which is all of the curvature

metrics plus SDF sampled at the vertex).

3.2 Coordinate systems, normalization, and reduction

Naively comparing the raw descriptors described above

using an Ln norm has problems. First, the distribution

of values may not be linear, or even purely exponential

(see Figure 2c,d). This means that a delta difference

of, eg, 0.5 may mean nearly identical for vectors with

values at the extremes, but not at all the same for vec-

tors with values at the center. Scaling by the length of d

can help some, but does not really address the problem.

Also, the vectors themselves may not be uniformly dis-

tributed. We us a combination of dimension reduction

and normalization to address these problems.

Dimension reduction: After computing the raw val-

ues we perform a coordinate system transformation by

applying Principal Components Analysis (PCA) or Multi-

dimentional Scaling (MDS) as appropriate to all de-

scriptor values. This has an added advantage that the

first eigenvector carries the bulk of the information (see

Figure 2, bottom right). In this new coordinate system

we apply an ad-hoc normalization to map the values in

each dimension to the range [0, 1]. For studies one and
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two (Sec. 4 and 5) we keep all of the dimensions. In

practice, we have empirically determined that we can

drop the remaining coefficients when the Eigenvalues

drop below 10% of the first one without much loss. This

happens around the 3rd - 10th coordinate, depending

on the original dimensionality of the data (MMS - 5,

DIST - 7, HIST - 10, all others 3). We used the reduced

dimensionality data for study three (Sec. 6).

We use PCA for all but the Average and Stan-

dard Deviation sample method. For this one, the correct

comparison method is the Kullback-Leibler Divergence

(KLD). We compute a distance matrix using KLD, then

apply multi-dimensional scaling (MDS) to that matrix.

Because the KLD is expensive to compute, in practice

we apply MDS to a 5R× 5R matrix. We select the 5R

vectors by adding in the vector that is furthest from

any of the vectors currently selected.

Directionality: The eigenvectors can point in one of

two ways. For visualization purposes, it is nice if the

positive direction of the first eigenvector corresponds to

positively curved regions, as best as possible. We deter-

mine if the first eigenvector should be flipped by com-

paring the coordinate directionality to either the Gaus-

sian (Gaussian-based metrics) or the Mean (all other)

curvature direction.

Normalization: This is a purely ad-hoc solution to

the comparison problem. Our only justification is that

the descriptor values “look” evenly distributed after

the mapping (see Figure 2). Sort the coordinate val-

ues. Divide the sorted values into 5 bins, at percentages

(0, 0.1, 0.3, 0.7, 0.9, 1). Within each bin, map the values

to the range of the bin, optionally applying Eq. 1) one

to three times. We determine how many times by choos-

ing the mapping that is closest to a line (ie, minimizes

the sum |x− y|).

y(x) = ex
2

or y(x) = 1− e(1−x)2 (1)

Note that this equation has two versions — one for

when the y values lie below the line x = y, one for

when they lie above. The values x are assumed to be

linearly mapped to the range [0, 1] before applying this

mapping.

We scale all objects to be unit size and map the raw

mean and Gaussian curvature values as follows: Mean

curvature: bin boundaries at 0 (-500), 0.05 (-20), 0.35

(-8), 0.5 (0), 0.65 (10), 0.95 (60) and 1 (700), with 2, 1,

0, 0, 0, 2 applications of Eq. 1. Gaussian curvature: 0

(-40,000), 0.05 (-2000), 0.15 (-500), 0.5 (0), 0.85 (400),

0.95 (3000) and 1 (40,000) with 2, 1, 0, 0, 2, 3 applica-

tions of Eq. 1. These values were found by experimen-

tation on the curvature values produced by the data

sets.

4 Stability study

For this study we evaluate the effects of mesh reso-

lution, noise, and smoothing on the descriptors. We

started with six meshes (fandisk, Isidore rocking horse,

horse, ferret brain, mandible, and tibia, see Figure 1),

from which we generated a total of 28 meshes each with

different resolutions and noise or smoothing.

Reduction: For each mesh we generated three meshes

at different resolutions by applying QSlim [13] with

a 30%, 60%, and 80% reduction in the percentage of

faces. Even the 80% reduction did not result in a no-

ticeable visual change. To establish the correspondence,

we project the original mesh vertices onto the reduced

meshes, interpolating the values in the faces. We then

averaged the difference between the original and re-

duced descriptors across all vertices. We plot the in-

crease in error as the mesh is reduced. For the summary

plot, we used the 80% reduction values.

Noise: We generated clamped Gaussian noise δ = e[−2,2]/2

and shifted each point along its normal n̂. Let B be

the diagonal of the bounding box containing the sur-

face. We created three meshes with three noise levels,

±δB (0.001, 0.0005, 0.00025) for each of the four mesh

reduction levels. To generate the noise plots, we com-

pared the noisy mesh to the unaltered mesh of the same

resolution, producing four plots per descriptor.

Smoothing: We applied area-normalized Laplacian smooth-

ing [9]. At each iteration we moved each point 1/3 of

the way to its Laplacian average, then area-normalized.

We generate meshes and plots as for the Noise case.

Figure 3 summarizes the results across all descrip-

tors and all studies. For all measures, we used the L2

norm.

We saw the same general trends in all three studies,

in terms of the behavior of the descriptors. Distance to

plane and Normal distribution were the most stable de-

scriptors, with Mean, CI, SI, and Gauss roughly similar.

SDF was the next most stable, followed by Movement

and Point (combining Mean, Gauss, SI, CI, SDF, and

Movement at the point). Length of Curve, followed by

the four fitting descriptors (ANCE and FIT), were not

that stable.

For the sampled descriptors, the best sampling strat-

egy was the histogram one (seven samples) followed

closely by the distribution descriptor (five samples) then

MMA (three samples). AVG, Saliency, and MIN/MAX

were, on average, the same, with AVG slightly out-

performing the others. Average and Standard deviation

(AS) and Vertex were not very stable, with Vertex be-

ing very unstable.

We analyzed the effects of mesh resolution, noise,

and sampling independently by looking at the individ-
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Fig. 4 Local feature selectivity. a) Examples of selected points. Note: Ball size is the actual size of the largest ring. b) Yellow
bars: Average spread of the shape descriptor values from the mean. A smaller spread is better. Blue bars: How likely a point
was to match to another point in the same set (Sec 5). Zero is better. Both measures were divided by their mean in order to
combine them in one plot.

ual plots (examples in Figure 1, bottom right). In sum-

mary, we saw the following: 1) Adding noise affects the

higher resolution meshes more than it does the lower

resolution ones. 2) Smoothing tends to affect the lower

resolution meshes more than the higher resolution ones.

3) The smoother or “nicer” the mesh is to start with

the less adding noise or smoothing makes a difference.

4) Using multiple rings produced an order of magni-

tude improvement over simply using the descriptor cal-

culated at the vertex. 7) Additional averaging (saliency

sampling, fitting) was, surprisingly, more prone to er-

ror than sampling using rings. 8) SI and CI are slightly

more stable than our (normalized) Mean and Gauss cur-

vature, with Gauss being the most unstable.

5 Sensitivity study

The previous study looked at the stability of the de-

scriptors — how much they were influenced by noise,

mesh sampling, and smoothing. In these studies, we

evaluate the descriptors by how well they can distin-

guish features. For each data set (mandible (10), fer-

ret (8), bat ears (35), radius and ulna (10), mechanical

parts (4)) we hand-picked sets of points which should

be similar (the “same” point on different instances of

similar meshes). Each set was chosen to be sufficiently

different from the other ones, eg the tips of the ears ver-

sus the edge. This is, admittedly, a human-perception

biased method of creating an evaluation set. However,

given that we want to work with real data sets, not ar-

tificially generated ones, we believe it is justified. Ran-

domly moving the selected feature points a small amount

(< 0.2r) produced qualitatively similar results.

Data analysis: Ideally, points in one set should have

descriptors that are similar, while points in other sets

should have descriptors that are dissimilar. We picked

two measures to evaluate this. The first measure is sim-

ply the spread of a given shape descriptor’s feature

value over all of the points in the set. These values are

summed up over all of the sets to yield a score for each

shape descriptor. A zero average and narrow standard

deviation are good.

The second measure evaluates how distinctive the

shape descriptors are, i.e., how likely a point from one

set is to match to points in another set. To calculate

this, we compare each point to all of the other points,

and sort the results. We then count how far down the

list we have to go to find a point in the same set. Ide-

ally, the count should be zero. For this study, we only

compared points that came from the same data set (eg,

the bat ears), not to all of the points in all of the data

sets.

We summarize the results in Figure 4. We combine

both scores into a single plot by plotting the first mea-

sure, and the second measure normalized to the first

measure. The mean and normal descriptors are clearly

the best, followed by distance to the plane and Gauss.

Not too surprising, sampling each ring with 3-7 samples

(MMS, DIST, HIST) performed better than taking a

single sample on the ring. For the mechanical models

alone, MMS was the better choice).
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Fig. 5 RAND classification scores, sorted by average RAND score.

6 Classification study

We examine the effectiveness of the shape descriptors

for a bag-of-words style classification [22,10]. For this

study we used the four mechanical models (horse, Isidore,

fandisk, and rocker arm), the ferret brains (13), the

tibias (13), and a subset of the bat ears (35 from 7

different genera). Using two samples, chosen at ran-

dom from each data set, we computed an initial set

of k ∈ [3, 10] shape descriptor clusters using K-Means.

The shape descriptor vectors were clipped at the 10%

Eigenvalue (Section 3.2). For each mesh in the data set

we then computed an area-weighted histogram based

on the distribution of the k clusters across the surface.

We then ran K-Means clustering again, this time on the

histograms, and compared the classification results to

the known classification using the RAND index [27]. We

limited the number of words (k) to 10 because K-Means

became unstable around 10 clusters. Results are shown

in Figure 5. The mean curvature metrics, either sam-

pled at the vertex or averaged around the vertex, per-

formed the best, followed by the shape diameter func-

tion, which is a more global metric. Given the stability

results of the previous section, the best metric would be

the average of the mean curvature sampled around the

vertex, followed by the average of the shape diameter

function sampled around the vertex.

Feature-based species classification: The previous

study looked at the entire shape descriptor distribution;

in this study we looked at classification using just the

shape descriptor values at hand-picked locations (see

bottom left of Figure 4). We used a total of 35 meshes

from 7 genus. We formed a feature vector by concate-

nating the descriptors at each feature point, and used

K-Means to produce a classification. We ranked the de-

scriptors by how well they matched the known classi-

fication. Distance to plane and CI were the clear win-

ners, followed by Normal to Plane. Again, using more

samples (Hist, MMS, Dist) was better than using fewer

samples. Since these two metrics are not strongly corre-

lated, combining them might produce better outcomes.

7 Correlation study

An obvious question to ask is, if one descriptor is good,

would two be better? We did not explicitly compare

combing descriptors, but we did perform a correlation

study (see Figure 6). The strongest correlations are,

of course, between different samplings of the same de-

scriptor. SDF correlates the most strongly with itself,

followed by Mean curvature, Normal Distribution, and

Distance to Plane. Gaussian curvature did not show

much correlation. Of the remaining descriptors, Move-

ment and Length of Curve did not correlate strongly

with much else. Of the two, Movement is better for

both noise and sensitivity, making it a good candidate

to combine with either the Normal Distribution or the

Mean curvature.

8 Results and discussion

The studies clearly show that sampling data just at a

vertex is bad; this is not surprising. The general trend,

for all of the descriptors, is that more samples is better,

both for stability and discrimination, regardless of the

descriptor used. We did see evidence of over-fitting for

the highest level of sampling in the sensitivity tests,

which indicates that the ideal sampling is somewhere

around 3-5 samples per ring, which can be reduced to

7-10 samples total via PCA. The Normal distribution

descriptor is consistently the best, followed by Mean

curvature or the Curvature index.

The non-sampled descriptors (Movement, Length of

curve) did about as well as the one sample per ring

version of the other descriptors, which indicates that it
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Fig. 6 Correlations of descriptors over all data sets.

is primarily the increased sampling that is of benefit.

Not too surprisingly, the Shape Diameter Function is

less discriminating locally than other descriptors since,

in a sense, it is measuring mid-scale features in the form

of the local medial axis.

One surprising result is that the ranking for stabil-

ity is similar for the ranking for discrimination power.

This hints that the ability to filter out small geometry

changes is related to the ability to cluster similar local

shapes.

Limitations of the study: Obviously, there are many

ways that local shape descriptors can be constructed,

and there may be unintended biases in the particular

implementations we use (for example our ad-hoc nor-

malization). We also only evaluated the feature match-

ing task at small scales; for segmentation a different

descriptor may be more appropriate.

Timings: For smaller meshes (< 30, 000 vertices) the

descriptors are roughly equivalent, at 2-10 seconds per

descriptor (Movement being much faster, ANCE and

Fit being slowest). For bigger meshes, finding the rings

dominates the calculations (up to an hour for 90,000

vertices). Area and SDF also do not scale well. Saliency

and avg/sd are the slowest ring sampling methods, with

the others about equal. The PCA and normalization

calculations are dominated by the length of the vector; a

few seconds for most of the descriptors, up to a couple of

minutes for the histogram sampling on large (> 70, 000)

meshes.

Acknowledgements: Funded in part by NSF grants
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9 Conclusion

We have presented a systematic evaluation of local shape

descriptors for the task of local feature matching on real

data sets, both biological and man-made. This was ac-

complished by creating a unifying framework for the

disparate local shape descriptors.
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