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ABSTRACT

We describe an extension of B-splinesto surfacesof arbitrary topol-
ogy, including arbitrary boundaries. The technique inherits many
of the properties of B-splines: local control, a compact representa-
tion, and guaranteed continuity of arbitrary degree. The surfaceis
specified using a polyhedral control mesh instead of a rectangular
one; the resulting surface approximates the polyhedral mesh much
as a B-spline approximates its rectangular control mesh. Like a B-
spline, the surfaceisasingle, continuousobject. Thisisachievedby
modeling the domain of the surface with amanifold whosetopology
matches that of the polyhedral mesh, then embedding this domain
into 3-space using a basis-function/control-point formulation. We
provide a constructive approach to building a manifold.

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling, Curve, Surface, Solid, and Object
Representations, Splines

1 Introduction

Surfaces of arbitrary topology are currently attracting a good deal
of attention. While spline surfaces have proven a powerful mod-
eling tool [BBB87] [Far88], modeling topologically arbitrary sur-
faces with them is hard, becausethey require a rectangular param-
eterization. To create complex surfaces, especially free-form ones
such as Figure 17, we need a surface model which is computation-
ally inexpensive and yet capable of modeling arbitrary topologies.
Ideally, this surface model retains the power of spline surfaces: a
compact representation, guaranteed continuity, and flexibility. This
paper presents such a method of surface modeling.

Our approach differs from previous techniquesin that the sur-
face is constructed from pieces of surface which overlap substan-
tially instead of abutting only along their edges. Mathematicians
have studied such surfacesfor many years[MS74] [ST67] using the
technology of manifolds. Although the underlying mathematics is
somewhat complicated, manifolds have advantages that make this
complexity worthwhile.

! Thiswork was supportedin part by grantsfrom NSF, ARPA, IBM, NCR, Sun Mi-
crosystems, DEC, HP, and ONR grant N00014-91-J-4052, ARPA order 8225.

Consider, for example, the problem of mapping textures onto
two adjacent patches in a conventional spline surface. Matching
thetexture along the boundary between the patchesmay bedifficult,
since there is no common parameterization between the patches.
With amanifold, however, the “edge” of onetexture region is well
within the adjacent textureregion, so that thetwo textures caneasily
be blended.

Similarly, if one tries to make a smooth path on a surface, and
the path crosses a patch boundary, maintaining smoothness of the
path and its derivatives may be difficult. But there are no bound-
aries on a manifold because as a path gets near the edge of a patch,
it has already entered the adjacent patch, and its derivatives can be
computed in that new patch’s coordinate system. This can be used
to make various forms of user-interaction (sliding one object along
another, for example) much smoother. Similarly, differential equa-
tions such as those used to generate reaction-diffusion textures can
be solved by blending partial solutions across patch overlaps.

This paper begins with a survey of previous and related work,
then sketchesahigh-level view of the surface construction technique.
Thisisfollowed by adiscussion of manifoldsin general and how to
build amanifold for agiven surface. Next we discuss adding geom-
etry to the manifold. Finally, we conclude with results and future
work.

2 Previouswork

Several different approachesto arbitrary-topology surface models
have been suggested. Subdivision [CC78] [Loo87] produces a
smooth surface by repeatedly subdividing apolyhedral meshand in
thelimit yieldsa G* surface. Thismethod is very general, but does
not admit an analytical form (although recent work [HDK93] has
made subdivision more tractable). Another approachisto “fill in”
any non-rectangular parts of a mesh with n-sided
patches [HM90] [LD89]. Thisis analogousto Bézier surfaces, in
that it ensurescontinuity acrossthe boundariesof patchesby main-
taining constraints on control points. A similar techniqueisto pro-
duce acollection of triangular (and possibly rectangular) elements
fromaninitial mesh and stitch them together into asurface using the
geometric information in the original mesh [Loo94]. In [WW94],
theinitial sketchis aset of contours over which atriangulated sur-
faceisstretched, using variational modeling techniques[WW92] to
control the shape of the surface.

Unlike the previous methods, our approach produces a surface
whichisonecontinuouspieceand hencedoesnot require constraints
to maintain continuity. Adding to (or removing from) the surface
is similar to adding or removing a row of control points from a B-
spline surface — continuity is automatically guaranteed.



Figure 1: Left: Gluing two patches together along their thin edge
then bending the patches along the crease. Right: Gluing two
patches together along a region then bending the patchestogether.

3 Oveview

Spline patches are a powerful modeling tool but stitching them to-
gether into complex surfaces has proven difficult. As an analogy,
consider building surfaces out of stretchy pieces of fabric that can
be“glued” to each other. Thepiecesof fabric are spline patches, and
the glue consists of mathematical operations such as control point
constraints. Previous methods have focused on gluing these fabric
piecestogether by applying glue thinly along the abutting edges of
the fabric pieces (seeleft of Figure 1). The problem with thistech-
nique is that a changeto one of the fabric piecesis not reflected in
the adjoining patch except along the glued edge. The smoothnessof
thejoint is maintained by adjusting the adjoining patch afterwards.

Our approachisto apply glueto the top of onefabric pieceand
the bottom of another piece and then glue them together by over-
lapping the two pieces. Now, when the first piece is stretched or
moved, the second, overlapping piece follows naturally with it (see
right of Figure 1). This eliminates the need to re-establish the con-
tinuity of the join after every change to the surface. In the curve
domain, this is the difference between Bézier curves and B-spline
curves, Bézier curvesarejoined together into larger curves by con-
straining the control points at the end of one curve and at the be-
ginning of the following curve. B-splines, on the other hand, are
extended by addingin another overlapping curve segment. We pre-
fer the B-spline approach becausethe domain is continuous and no
constraints are required; to extend B-splinesto arbitrary topologies,
however, we first need a mechanism for adding overlapping pieces
to asurface.

We begin by taking several pieces of fabric and gluing them to-
gether into alarger object by overlapping them. To describethe ob-
ject, we need to describe the pieces of fabric and how they over-
lap. Thisis very similar to the familiar concept of an atlas of the
world; each page of the atlas is rectangular (i.e., a piece of fabric)
but the collection of pages describes a spherical object, the world.
The pages of the atlas overlap enough to get from one page to the
next. For example, the page for France contains part of Spain, and
the page for Spain contains part of France. When traveling from
France to Spain there is atime when one is located on both pages;
the two maps may not be identical where they overlap but there is
enough information to establish a correspondence between the two
pages.

With an atlaswe begin with an object, theworld, and create a set
of pagesthat cover the world, with each page overlapping with its
neighbors. Supposewe did not have the world, but instead had just
the pagesof an atlas. We could put the pages onto stretchy piecesof
fabric and glue them together using the information on the overlap-
ping parts. This glued-together object is then a“world”. Thisisa
constructive approach to building a world as opposed to an analyti-
cal one. Becausewe do not have aworld (i.e., the surface) a priori,
we usethis constructive approachto building asurface out of pieces
of surface.

Thereisonemore consideration; when we build our world from
the pages of the atlas, how do we know what the world looks like?
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Figure 2: Stretching the pages of the atlas out to approximate the
polygon, then gluing them together
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Figure 3: Glue the pages of the atlas together, then stretch them out
to approximate the polygon.

The pagesand their overlaps provideinformation on the topology of
the object but no information on the geometry of it. With areal atlas
we have someimplicit knowledge of what the world looks like, but
this knowledgeis external to the atlas. There are two possibleways
to add geometrical information into the atlas; consider the case of
making an atlasfor acurve. Therough shapeof the desired curveis
given by acontrol polygon. For eachvertex and edgeof the polygon
we create haveapagein the atlas. A page correspondingto an edge
of the polygon overlapswith the two vertex pages corresponding to
the vertices of the edge. The curveis built by gluing the vertex and
edge pagestogether and adding geometrical information to describe
what the curve looks like. This can be accomplished in two ways:

¢ First describe what each pagelooks like, then glue the pages
together. This corresponds to taking the pages of the atlas,
stretching them out to approximate the control polygon, then
gluing them together (see Figure 2).

e First glue the pages together, then describe where they go.
Thiscorrespondsto gluing the pagesof the atlastogether, then
stretching them out to approximate the control polygon (see
Figure 3).

We take the second approach becauseit is simpler. In the first
approach, the gluing stage must be repeated every time the geom-
etry of the surface changes, i.e., when the control polygonis moved.
In the second approach, the gluing process is performed exactly
once, and is independent of the particular geometry (but not topol-
ogy) of the object.

Although this construction process is excessive for defining a
curve, imagine constructing a surface from a polyhedron. Building
an atlas provides us with alocal description of the surface that is
continuous and upon which we can navigate, i.e., perform opera-
tions such as calculating geodesics. The surface is relatively sim-
pleto describelocally but we can still perform global operationsbe-
causethe atlas pages overlap, allowing usto easily move from one



area of the surface to another. In contrast, the traditional method of
stitching patchestogether is to abut them, resulting in joins between
the patches that must be dealt with separately.

4 Outline of the construction process

To build our surface we begin with a polyhedral mesh (created by
the user) that describesthe basic shape and topology of the surface.
Thisisin analogy with aB-spline control mesh, exceptthat the poly-
hedral mesh is not limited to a rectangular topology. We formally
define this mesh in Section 5.

Next we define the pages of the atlas and how those pages over-
lap. We create one page for each element in the polyhedron, i.e.,
one page for each vertex, edge, and face. How the pagesoverlap is
determined by the adjacency relationships in the polyhedron. For
example, a face page overlaps with the pages for the vertices and
edges of the face. Figure 20 shows a sample polyhedron and a sur-
face colored by pagetype. In Section 6 we formally define an atlas
and show how to construct an atlas using the polyhedron asaguide.

Finally, we add geometry (“shape”) to the atlas. We do thisin
amanner similar to the one used for B-splines. On each page we
build several basis functionsand associate acontrol point with each
function. Thistells uswhere the middle part of each page goes; be-
cause the pages overlap, the location of the edges of the page will
be influenced by the control points of the overlapping pages. This
is covered in Section 8.

5 Thepolyhedron

Construction of asurface starts with apolyhedral “ sketch.” To sim-
plify later steps, we require that every interior vertex have exactly
four facesadjacentto it, i.e., verticesare of valencefour. A polyhe-
dron of this form can be constructed from an arbitrary polyhedron
by taking the dual of the first subdivision [CC78][Kin77] (see Ap-
pendix D).

The polyhedral sketch must satisfy some technical restrictions
that essentially say it “looks like” a surface: every vertex must be
an end of some edge, every edge must be an edge of some face, at
most two facescan meet at an edge, eachinterior vertex must have4
edgesand 4 facesadjacentto it, and each boundaryvertex must have
n edgesandn — 1 facesadjacentto it. Furthermore, the polyhedron
must beorientable, i.e., it must contain no embedded Mobiusstrips.
These technical restrictions make the polyhedron an “oriented sur-
face” inthesenseof algebraictopology [Spa66]. Finally, werequire
that each face have 3, 4, 5, or 6 edges.

The polyhedral sketch contains three types of information: the
geometricinformation given by thelocations of the polyhedron ver-
tices; thelocal topological information as given by the “incidence”
relations—which vertices lie on which edges, which edges are in
which faces; and the global topological information that can be de-
rived from this local data: the number of components or pieces of
the sketch, the number of boundary components, and the genus.

6 Theatlas, or manifold

We haveinformally described an object consisting of pieces of fab-
ric “glued together”. This concept is called a manifold. Manifolds
were introduced in the 1890s and formalized in the 1920sin order
to describe objects whose topology was more complex than that of
Euclidean space. The notion was that an object “locally like” Eu-
clidean space could be studied in much the same way as Euclidean
space. In one view, a manifold is a structure imposed on a set —
adivision of the set into overlapping regions, each of which isin
correspondencewith a portion of the Euclidean plane. Consider a

world atlas. Every point on the world can be found in at least one
page in the atlas and sometimesin several. A path from one point
to another can be found by tracing aline through the pages. Where
the path must crossfrom one pageto another, the two pagesoverlap
enough that one can locate oneself on the second page. The indi-
vidual pages are regions of i? but taken together they represent a
sphere[MYV93]. Thereare also implicitly defined transition func-
tions from one page to another. Thesearethe“glue” we useto glue
the pagestogether; they establish a correspondence between the re-
gion of onepageand aregion of another. ThusBrusselsanditsenvi-
rons may appear on two different atlas pages: the page for Benelux
countries, and also in the upper right corner of the page for France.
Thelabels for Brusselsand the surrounding towns, etc., establish a
correspondence between the upper right corner of the France page
and the lower left corner of the Benelux page.

6.1 Formal definition

In the traditional definition of a manifold the object exists and the
manifold consists of charts, or mappings from the object to pieces
of ®". (The images of the charts are our atlas pages. From now
on, we will refer to the atlas pages as charts.) Thisis an analytical
view; because we do not have an object but are building it we de-
part from thisview and defineaconstructiveview of manifolds. Our
constructive definition of amanifold startswith chartsand informa-
tion on how they overlap (the charts and the transition functions).
We call this a proto-manifold. From the proto-manifold we build a
manifold using an equivalencerelation, i.e., we glue the charts to-
gether using “ thisplace on this chart isthe sameasthat place on that
other chart. In[Gri] we show that this definitionis equivalent to the
traditional one.

Definition 1 A C* differentiable proto-manifold K of dimension
n consistsof:

1. Afinite set A of connected open setsin R". A iscalled a
proto-atlas. Each element ¢ € A is called a chart.

2. A setof subsetsU;; C ¢;, wherec; and ¢; arechartsin A
and whereUs; = ¢;.

3. A set of functions ¥ called transition functions. A transition
function ¢;; € Wisamap ¢ : Uy; — Uj; wherelUs; C ¢
andUj; C ¢;. Notethat U;; and U;; may well be empty. The
following conditions on #;; must hold:

(@) ¢:;is1— 1, onto, and C*-differentiable
() ¥ =y
©) Yi(x)=2,2 €c;

(d) The* cocyclecondition”: (¢i; 0 ¢jx)(x) = ix(x) for
@ € Ui [ Ui; (seeFigure 4)

The chartsc¢ € A are the pages of the atlas. The subsets U;;
describewhat part of chart ¢ overlapswith chart 5. Thefunction ¢;;
defines the exact correspondence between pointsin U;; and points
in Uj,'.

Next we build themanifold. If K = (A, ¥) isaproto-manifold
then thereis arelation ~ defined on L.¢ ac¢ (where Ll denotes dis-
joint union) suchthat if z € ¢, y € ¢;, thenz ~ y iff ¥i;(z) = y.
Conditions (1)—(3) in Definition 1 ensure that ~ is an equivalence
relation [Gri].

Continuing the analogy, each chart ¢ is a page of the world at-
las, each transition function «;; is a correspondence between parts
of two charts, and the equivalencerelation ~ saysthat “the placela-
beled Brusselson page 93 is the same as the place labeled Brussels
on page24.”



Figure 4: Three overlapping charts. The cocyclecondition requires
that (5 0 ¥ )(x) = Yir(x) fore € Us ﬂ Us;.

The relation ~ lets us build a single object from the charts. If
apoint z in one chart is taken via ¢;; to apoint y in another chart
(¥i; (=) = y) then those two points are a single point on the final
object.

Definition 2 Let~ betheequivalencerelationdescribedaboveand
K aproto-manifold as defined above. Define M asthe quotient of
Uceac by ~. Let IT be the map taking z € U.cacto [z] € M,
where[z] is the equivalenceclass of =.

In [Gri] we prove under weak conditions satisfied in the con-
struction below that M is a Hausdorff space upon which we can
construct a traditional manifold structure. The correspondence be-
tween our definition and the standard one is relatively simple: the
image of achart ¢ under themap Il isasubsetIl(¢) = D. C M;
therestriction of 11 to ¢ definesa one-to-one correspondence

Jelr) = T1(x)

between ¢ and D... Theinverseof . isamap a. from asubset D,
of M to ¢ which isasubset of R?, i.e,

Ye:c—=D.C M,

ac:De—cCR, aule) =7 (2)

The maps « . are the “coordinate charts’ in the standard definition
of amanifold structure ontheset M [Spi70]. Themap . iscaleda

local parameterizationin [MS74] and acoordinatesystemin [Ste74].

Note that the name*“ chart” refersto oneof our subsetsof %2 and
that « and o~ denotethe correspondencebetween these chartsand
subsets of the manifold.

6.2 Building a manifold from a polyhedron

In the following discussion we construct amanifold without bound-
ary, i.e., the polyhedron has no boundary vertices. Extending this
construction to a manifold with boundary is straightforward, as ex-
plained in Section 7.

We use the topological structure of the polyhedron as a guide
for building the manifold. We construct one chart for each element
in the polyhedron and define the overlaps of the charts by the adja-
cency relationshipsin the polyhedron. This produces three sets of
charts: the vertex charts — those charts corresponding to the ver-
tices of the polyhedron — the edge charts, and the face charts. We
denotethese by V. = {chartforv},ey, E, and F, respectively.
The entire proto-atlas A isthen V [ JE | J F.

Figure 20 shows a polyhedron and the resulting surface, which
has been colored according to chart type. Thevertex charts (V) are
inred. Each vertex chart has eight other charts overlapping it; four
edge charts (in green) and four face charts (in purple).

To keep the notation simple, henceforth V' indicates the chart
associated with a vertex v and V' the chart for a vertex named v/,
and similarly for edgesand faces.

A chart in one set never overlaps with a different chart in that
same set. A chart does overlap with those charts that are “nearby”

in the polyhedron. For example, aface chart only overlapswith the
vertex and edge charts corresponding to the vertices and edges of
the face. In summary:

L Uyyr =0,V # V' (and similarly for Ugg: and Upgr).
2. Uvg #0iffvee.

3. Uvp #0iffvef.

4. Ugp # 0iff e isanedgeof f.

If we perform a similar construction in 2 dimensions then we
have onechart for each vertex and one for each edge (see Figure 3).
An edge chart E overlapswith two vertex charts vV and V', where
e = {v,v'}. Inthiscasethe charts are all segmentsof thereal line;
note how each edge chart is “nearly” covered by the two neighbor-
ing vertex charts. By “nearly” we mean the chart £ is covered by
theclosureof Ugy and Ugy -, i€,

E=Ugv UUEV’~

To duplicate thisin 3D we ensure that the edge and face charts are
“nearly” covered by the overlapping vertex charts (see Figures 6
and 7).

Inthe 2D example, theinterior vertex charts are also covered by
the two overlapping edge charts, i.e.,

V= UVEUUVE’~

We would also like to cover the vertex and face charts in this way
but thisturned out to betoorestrictive. We do, however, requirethat
the charts overlap as much as possible.

6.2.1 Thecharts

A chart is a connected, open subset of 2. An overlap region isan
open subset of the chart.

The vertex charts are unit squares centered at the origin. A ver-
tex chart overlapswith four faces (thefour quadrants) and four edges
(Figure 5 showsthe vertex chart and the overlap regions). A vertex-
edge overlap region Uv g overlapswith the two regions Uy ¢, and
Uv r, Where fo and f, are the two faces adjacent to e.

The edge charts are diamonds with the left and right ends
chopped off (see Figure 6). An edge chart overlapswith two vertex
charts (the left and right half of the diamond) and two face charts
(the upper and lower half of the diamond).

Theface chart for an n-sided faceis an n-sided regular polygon
centered at the origin (slightly smaller then a unit polygon). The
edgechartsoverlap the edgesof thepolygon, whilethevertex charts
overlapthecorners. TheregionUr 5 overlapsthetworegionslUgv,
and Urv, , where vy and v, are the endpoints of e.

The details of the charts and their overlaps are given in
Appendix B.

6.2.2 Thetransition functions

The transition functions are the glue that holds the charts together.
We have described what parts of the charts to glue together but not
the exact correspondence between them.

Transition functions must meet two requirements: they must be
C*, and the cocycle condition must hold (see Figure 4). Addition-
ally, we would like the functions to be as close to the identity func-
tion as possible. By this we mean that atransformed (vias).../) im-
ageon U, shouldlook as muchlike the original imageon U,/ as
possible.
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Figure 5: A vertex chart. Left: the four regions Uy r, Right: the
four regionsUv g,
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Figure 6: Anedgechart. Left: thetwo regionsUgr, (Fo is3-sided,
[y is4-sided). Right: thetwo regionsUgv;
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Figure 7: A face chart. Left: the n regions Upv, Right: then re-
gionsUrg,
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Figure 8: Mapping from an edge chart to aface chart by translating
then rotating.
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Figure 9: Mapping from a face chart to a vertex chart using a pro-
jective transformation.

Chartswithin the set V (and similarly E and F) do not overlap.
Thus the transition function ¢y v+ is either the empty function (if
V £ V') or theidentity (if V' = V'), and similarly for edge-edge
and face-face transition functions.

This means we need only consider the transition functions be-
tween chartsin distinct chart sets, e.g. vertex-to-face transitions. If
wedefinethefunctiony - ¢+ thenthefunction ¥ ¢ ¢ isdefined asits
inverse. Thusthe transition functions we define can be divided into
three categories: edge-to-face, vertex-to-face, and vertex-to-edge.

Satisfying the cocycle condition is a matter of ensuring that the
function taking the edge chart to thevertex chart directly isthe same
as the combination of functions taking an edge chart to a face chart
toavertex chart (seeFigure 10). Wefirst definethe edge-to-faceand
vertex-to-face functions, and then define the edge-to-vertex func-
tions as compositions of the other two.

The edge-to-face transition function is a planeisometry; the re-
gionUgr issimply translated androtated (see Figure 8). Thevertex-
to-face transition function takes the quadrant Uy » and “ stretches”
it using aprojectivetransformation tofit it into the corner of theface
chart (see Figure 9).

The edge-to-vertex transition function is built asa blend of two
functionswhich are compositions. Examining Figure 10, on the top
half of the diamond the function must be the composition of the
edge-to-face and face-to-vertex functions for the top face, while on
the bottom half of the diamond the function must be the correspond-
ing composition of the bottom face functions. Thesetwo composed
functions will not, in general, agree along the z—axis. To fix this,
we have |eft a gap between the two composed functions; this lets
us blend between the two composed functions in the gap. (Thisis
the reason the face charts are slightly smaller than the unit polygon
—to give us room to do the blend.) Care must be taken to ensure
that this function is 1-1, onto, and C*; details of this (and the other
functions) are givenin Appendix C.

6.3 Themanifold

A formal proof that these chartsand transition functionsform aproto-
manifold (Definition 1) appearsin [Gri]. Informally, the charts are
definedto beopen setsin 2 and the transition functions are defined
to be 11, onto, and C*. The cocycle condition is satisfied because
inthe only non-trivial case, wherethree charts overlap (one each of
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Figure 10: Mapping from an edge chart to a vertex chart using the
upper and lower composition functions.

avertex, edge, and face chart), we have defined the functions to be
compositions of the others.

7 Manifoldswith boundary

To extend our definition to a manifold with boundary we allow the
charts of the proto-manifold to be half-ballsin ". We use amani-
fold with boundary when the polyhedral sketch hasaboundary,i.e.,
when an edge has a single adjacent face. Since a boundary never
occursin the middle of aface chart, we need only alter our descrip-
tions of vertex and edge charts. An edge chart £ correspondingto a
boundary edgeissimply atrianglejoined with thexz —axis. A vertex
chart V' corresponding to a boundary vertex is a contiguous subset
of the quadrants of the unit square, with some part of the axes in-
cluded (e.g., a vertex chart corresponding to a corner vertex would
consist of asingle quadrant).

Thedefinitions of the transition functionsremain unchanged ex-
cept for the edge-vertex functions, since the overlap regionsremain
unchanged. The edge-vertex function becomesjust the single com-
posed function oneone-half of theedgechart. Thea. functionsalso
remain the same.

8 Adding geometry to the manifold

We now have a collection of stretchy fabric pieces glued together
but with no geometric structure (they arejust “ collapsed on the floor
inapile”). Rather than describewhat the entire object lookslike all
at once, we just describe what the middle of each chart looks like.
Because of the way the charts overlap, this will determine the ge-
ometry of the entire manifold.

To definethe geometry we useabasi s-function control-point for-
mulation. The basisfunctions{B. : M — R}.cs areafinite col-
lection S of local, C* functions that sum to one everywhere; they
areanalogousto traditional B-spline basisfunctions. Thebasisfunc-
tion B, determineshow much the control point G, € R* influences
the surface (2 at agiven point:

Qp) =Y G:Bu(p)
€S
We next describe how to build the basis functions.
8.1 Basisfunctions

To build the basisfunctions we first define aset of proto-basisfunc-
tions on the chart and associatea control point with each proto-basis

Vertex
1 Edge
I Face

Figure 11: The center part of overlapping chartsin a vertex chart.

function. Specifically, we have aset {b,}.cs of C* functions
by:ic— R

wheres = {¢,i},c € Aandi € 1...n.. The number n. is de-
pendent upon the desired continuity & and the type of chart (vertex,
edge, or face). We definethese functions in Section 8.1.1; for now,
suffice it to say they are C* and go to 0 by the boundary of ¢ and
are similar to atensor-product basis function.

The b functions are defined on the individual charts and hence
do not interact with functions on other charts. We next extend the b
functionsto themanifold wherethey will interact. Imaginebuilding
piles of sand on each page of the atlas. When the pages of the atlas
aregluedtogether the piles of sand are nolonger on asingle page but
possibly on several pages glued together, each page of which may
haveits own piles of sand. Formally these piles of sand are built by
extending the proto-basis functions to the manifold by using thea.
functions where they are defined and 0 where they are not. Define
B.: M — Rhby

A I;S e if ozc_l c

Thesefunctionsare C'* and local. For the surface @ to behavelike
asplinesurface, werequire basisfunctions B, that meet three prop-
erties that traditional basis functions satisfy:

e B, isC* for somek.
e B. islocal (its support liesin asingle chart).
. ZsesBS(p) =1fordlp e M.

The last step is to normalize the B, functions to ensure that they
sumto one. If for every pointp € M wehave) ;. B.(p) # 0
then the definition B, : M — R,

_ Bup)
BS(p) - ZS’GS BS’(P)

is valid. Figure 11 shows how the center parts of edge and face
charts overlap avertex chart. Recall that the vertex charts “ nearly”
cover every chart and hence the manifold; to ensure that the above
definition is valid, we make certain that the supports of the proto-
basis functions cover the center area of the chart in which they are
defined. As shownin Figure 11, this ensuresthat the vertex charts
are covered by the supports of the { B }.¢s functions and hence
that the manifold is covered by them as well.

8.1.1 The proto-basisfunctions

We now show how to build the proto-basisfunctions using atensor-
product B-spline and a projective transformation. For each proto-

basis function b. ; (r) we start with a quadrilateral @ in its chart ¢



.25
-.25

-25 |25 -.25 .25
Vertex Chart

Edge Chart

.25

-25 1 .25
Face Charts

Figure 12: The quadrilaterals (); for the proto-basis functionswith
grid division 4.

(see Figure 12) and construct a projective transformation ¢, (see
Appendix A) from the quadrilateral to the unit square. Let 3 :
#? — % bea C* tensor-product B-spline whose support is from
0—(k/2)tol + k/2. Thentheith proto-basis function is

bi(r) = B(dao,(r))

The quadrilaterals for the face chart are formed by mapping a
subdivided unit squareinto U pv viaaprojectivetransform. If ¢ v
isaprojective transform from U rv to the unit square then the four
cornersof Qo aredyy, of (0,0), (0,1/d), (1/d,1/d), and (1/d, 0).

Thechoiceof d dependson k. Thesizeand number of the quadri-
laterals (and the size of the support of the tensor-product B-spline)
are chosen so that the supports of the proto-basisfunctions cover as
much of the chart as possible without falling out of it. For the C?
pictures we used agrid division of 4.

8.2 Thecontral points

Thelocation of thecontrol pointsiscompletely unconstrained; how-
ever, the user has already provided a rough sketch of the shape of
the surface (the polyhedron). We provide aninitial placementof the
control points based on the subdivision surface of the polyhedron.

We describe how to assign valuesto the control pointsusing the
Catmull-Clark subdivision surface (£) of the polyhedron. Thispro-
duces a surface with the “feel” of a B-spline surface (note, though,
that the choice of values does not affect the continuity). Wedefinea
mapping from the manifold to the subdivisionsurface’ : M — L
and assign the function GG thevalue #(p. ), where p. isthe center
of support for the basis function B..

To define H, we first note that after one level of subdivisionwe
have one subdivision point {.. for each chart ¢ in M. We relate the
origins of the charts to the subdivision pointsby #(«.(0,0)) = ..
This places the subdivision pointsin achart V' as shown on the left
of Figure 13.

After onelevel of subdivision every facein the subdivision sur-
faceis 4-sided; these faces are mapped to the quadrants of the ver-
tex charts. Further subdivisions“grids’ the vertex chart as shown
in the right of Figure 13. We define H by assigning the grid points
(o ;1 (grid point)) to their corresponding points in the subdivision
surface. Eventually, this relates a set of pointsthat are densein M
to the subdivision points." Thefunction for H on this denseset can
be extended to M in anatural way.

! We assign the pointsalong the boundary of the vertex charts v (V') to their ad-
jacent pointsin M .
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Figure 13: An abstraction of the subdivision process on a vertex
chart. The polyhedron has been subdivided twice.
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Figure14: Left: Triangulatingtheinterior of avertex chart. Middle:
Adjoining edges. Right: Filling in the corners.

8.3 Triangulating the embedding

Thereisatradeoff between the number of trianglesin the triangula-
tion and how closely it approximatesthe surface. Thetriangulation
presented here produces approximately (2r)(2r) N, triangles for a
given resolution r. If the control points are evenly spaced then the
resulting triangulation is also evenly spaced.

Wetriangulatethe domain by first triangulating the vertex charts
asshown on theleft of Figure 14, where r determinesthe number of
squares. Tofill in the remaining gaps, we adjoin the triangles along
the boundariesto the triangles of neighboring vertex charts using a
strip of triangles. The corners are filled in with an appropriate n-
sided triangulation (see Figure 14).

9 Remarksand future work

Images 17-22 show some example surfaces, most of which were
created using an interactive editor. The coloring of Image 18 was
determined by running a reaction-diffusion simulation on the man-
ifold and using the resulting chemical concentrations to create the
stripes[Tur91]. Becausethe embeddingdefinesametric ontheman-
ifold, we can use either that global metric or the local (chart) metric
with the reaction-diffusion equations.

This surface technique produces aesthetically pleasing models
fairly efficiently and easily. It is aso suitable for data fitting be-
cause the topology of the surface can be made to fit the topology of
the data, bringing the surfacefairly closeto the datainitially. Addi-
tionally, continuity constraints need not be maintained while fitting
the surface to the data.

Although this technique shares many of the properties of tradi-
tional splines, some techniques have yet to be developed, such as
the eguivalent of knot insertion and the Oslo algorithm. Although
we can use subdivision to produce a more finely controllable sur-
face similar in shapeto the original surface, this surfaceis not nec-
essarily identical to the original. Note that if the polyhedral meshis
rectangular then the resulting surface reducesto a B-spline surface.



10 Implementation

We haveimplemented a simpleinteractive polyhedral editor to cre-
atethe surfacesshownhere. Theuser buildsanarbitrary polyhedron
P by creating vertices and connecting them together into faces. The
system automatically creates a second polyhedral model C' whichis
the dual of thefirst subdivision surfaceof P. (Figure 16 showsboth
P and C for the flower model.) The user is free to move the ver-
ticesof C. The editor runsin real time on an HP-735 with surfaces
of continuity C? and atriangulation level of 4.
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A Projective Transfor mations

Let Bi = (1,0,0)%, B> = (0,1,0)*, Bs = (0,0,1), and By =
(1,1,1)" andlet P . .. P, bethe (columnvectorsof) homogeneous
coordinates of four points of the plane, no three colinear. Thereis
amatrix Tp suchthat Tp (B;) isanon-zeromultiple of P;. Hereis
the construction of Tp: Let M p bethe3 x 3 matrix whose columns
arePl,P2, and P;. Let A = M;1P4. Lettlng i (l = 1,2,3)
denote the entriesof A, T isthe matrix whose columnsare A; P,
)\2 P2 and )\3 P3 .

To find a projective transformation on the plane taking any set
of four points { P; }, no three colinear, to any other such set {Q; },
compute the matrix K = ToT5'. Multiplying K by the vector
(=,y,1)" givesavector (X (z,y), Y(z,y), W(z, y)). Theprojec-

tive transformation we seek is just (w, y) - (e, =),

B Charts

We describe the exact shape of each chart (a subset of #?) and the
overlap regionsU......

Eachvertex chart is aunit square centered at the origin (seeFig-
ure 5). A vertex chart overlaps four face charts (corresponding to
the four faces having v as a vertex) and four edge charts (corre-
sponding to the four edges having v asavertex). The Uy . are de-
finedto be p.v (Uev). If Uvp, and Uv g, overlap then e must be
an edgeof f.

Theface chart for an n-sided faceis an n-sided regular polygon
centered at the origin. The size of the polygon is chosen so that the
perpendicular distancefrom the edge of the face chart to the edge of
the unit polygon containing it is a constant & (see Figure 7). Typi-
cally, h issmall. For thefiguresin this paper avalueof .1 wasused.
A wedge of a polygon is the triangle whose vertices are the center
of the polygon and the two ends of one side of the polygon.

An n-sided face chart overlaps with . vertex charts (the . cor-
ners of ') and n edge charts (the n edges of F). The Ugpv, are
bounded by linesdrawn from the centroid of the polygon to the mid-
pointsof the polygonedges. TheUr g, arethe partsof the chopped-
off “wedges” mentioned above that actually lie in the chart F. If
Urv [\Ure # 0 thenv isavertex of e.

The edgechart isadiamond with itsleft and right endschopped
off. Thediamond consistsof two triangles, onecongruent to awedge
of aunit polygonwith the same number of sidesas each of the over-
lapping face charts. Thetrianglesarejoined along the sidesthat cor-
respond to the edge, and that side is placed along the z-axis.

An edge chart overlaps two face charts and two vertex charts
(the left and right sidesof E). If fo = {...,v,v',...} and f1 =
{...,v',v,...} thenUgpg, isinthe upper half plane, Ugyv isonthe
left, and Ugy+ ison theright.

C Transition functions

The face-to-edge function is arigid motion (see Figure 8). Let d,,
be the height of the wedge and § be the amount of rotation:

ore(s,t) ={scosf —tsinf, tcosf + ssinf + d,, }

Theface-to-vertex transition function usesthe unique projective
transformation taking any four pointsin the plane, no three of which
are collinear, to any other four such points (see Appendix A). Let
¢ pq denotethe projective map that takes acorner of aunit polygon
P containing a face chart F' to a quadrant ¢} of a vertex chart
(see Figure 9). Thefunction ¢ zv issimply therestriction of ¢pg
toUrpv andpvr is ¢1_92g restricted to Uv r.

Theedge-to-vertex transition isdefinedin terms of the other tran-
sition functions. We define ¢ gv tobe v ryv 0 ¢rr, OnUgr, and
¢rvovrr ONUgr sothat thecocycleconditionissatisfied (see
Figure 10). To complete our definition, we need only define ¢ gv
ontheno-man’sland, i.e., we must produceasmooth blend between
the two compositefunctionsontheregionUsv — (Uer, | Usr, ).
Recall that theregionsU g, are eachat adistanceh from the z-axis
(this displacement by & wasincluded precisely to permit us do this
blend). The choice of h will affect the embedding function defined
in Section 8, but does not affect the discussion here.

Todefiney gv wefirst extend thedomainsof thefunctionsy e r,
and ¢r,v. ¢rF, islinear, so it extendsto all of R?; similarly for
¢rr . Now we extend the domains of the functions ¢ 7, v to the
region per, (Usv — Ugr, ), i.€., thedomain of the o g5, plusthe
no-man’sland. The singularities of ¢ v 5, lie on aline that doesnot
intersect v gr, (Uev —Ugr, ) [Gri]. Thereforethe compositefunc-
tion canbeextendedto theregionUgv —Ugr, . A similar argument
holdsfor ¢ g, . Using theseextended functions, we definep gy by

eev(z,y) = nY)err, o prv(,y)
+(1 —n(y))err o vrv(z,y)

wheren : ® — R isablend function which is C*, andis 1 to the
right of A and 0 to the left of —A. In [Gri] we show that ¢ gv is
invertibleand 1-1on Uy 5.

D Dual of first subdivision surface

Given a polyhedron P, the first subdivision surface P’ of P con-
tains a vertex for every vertex, edge, and face of P (see Figure 15).
All of thefacesof P’ haveexactly 4 sides[Kin77]. Taking the dual
of this produces a polyhedron C' with vertices of valence 4. Fig-
ure 16 shows the original polyhedron P in light blue, and the dual
surface C' ingreen. Theverticesof C areinitially placed at the cen-
troids of the faces of P’.
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Figure 16: The polyhedral sketch for the flower. The light blue
polygon (drawn in wire-frame) is built by the user. The green poly-
gonisthedual of thefirst subdivision surface of the light blue poly-
gon and is constructed automatically. The locations of the vertices
of the green polygon have been adjusted to producefiner detail.

Figure 17: A two-holed torusin the shape of aflower.



Figure 18: Thecoloring is achieved by running areaction-diffusion
system on the domain of the surface (the process was halted when
partially finished for aesthetic reasons).

Figure 21: A laser-scanned image of a ceramic bunny, courtesy of
Stanford University.

Figure 19: Alexander’stwo-holed torus (in the shape of a mug).

Figure 22: An approximation of the laser-scanned bunny.

Figure 20: A two-holed torus colored by atlas page type (vertex,
edge, or face).



