
Using Texture Synthesis for Non-Photorealistic Shading from Paint Samples

Christopher D. Kulla
cdk1@cec.wustl.edu

James D. Tucek
jdt1@cec.wustl.edu

Reynold J. Bailey
rjb1@cs.wustl.edu

Cindy M. Grimm
cmg@cs.wustl.edu

Washington University in St. Louis

Abstract

This paper presents several methods for shading meshes
from scanned paint samples that represent dark to light
transitions. Our techniques emphasize artistic control of
brush stroke texture and color. We first demonstrate how the
texture of the paint sample can be separated from its color
gradient. We demonstrate three methods, two real-time and
one off-line, for producing rendered, shaded images from
the texture samples. All three techniques use texture syn-
thesis to generate additional paint samples. Finally, we de-
velop metrics for evaluating how well each method achieves
our goal in terms of texture similarity, shading correctness
and temporal coherence.

1. Introduction

Traditional artists convey shading using brush stroke tex-
ture and color variation. They work on a flat canvas, requir-
ing good spatial sense to convey believable lighting. On the
other hand, computer graphics programs can easily com-
pute lighting, but cannot make artistic decisions. The algo-
rithms and techniques we present in this paper address this
disparity. Our goal is to retain artistic freedom while lever-
aging the computer’s processing power to shade complex
meshes.

In our system, an artist provides an example of a shad-
ing change from dark to light as an image strip. This paint
sample can either be scanned in or created with a 2D paint
program. We then apply this user-defined shading style to
a mesh, making it appear to be painted with the same tech-
nique (see Figure 1).

A typical sample such as Figure 4(a) has two distinct
properties that vary with shading: color and texture. Color
transitions are typically smooth, albeit non-linear, making
them easy to model. Extracting texture change is harder be-
cause texture transitions are coarser than lighting changes
and because replicating the texture seamlessly is non-trivial.
We rely on texture synthesis [3] to address this problem.

Figure 1: A typical paint sample, scanned by
the user, used to shade a mesh.

We discuss previous work in section 2. In section 3 we
show how to separate color transition from texture transition
in paint samples. In section 4 we describe our three render-
ing methods to apply paint samples to a lit mesh. Section 5
introduces metrics that qualitatively capture common tex-
ture distortions, shading errors and temporal coherence in
animation. Section 6 compares the quality of each render-
ing method using these metrics. We discuss future direc-
tions of our work in section 7.

2. Previous Work

Non-photorealistic shading is a well studied problem.
Technical illustration shading [5] introduced the use of
warm-cool color blends to enhance the perception of shape
and orientation. The lit sphere approach [15] extracts artistic
shading models from actual paintings. Unfortunately, much
of the original brush texture is lost as the shading gradient
is captured. Several papers have addressed the technique of
hatching [14, 10] in which lighting is conveyed by vary-

Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG’03)

0-7695-2028-6/03 $17.00 © 2003 IEEE

ing stroke densities and orientations. Other rendering styles
that rely purely on texture change include charcoal render-
ing [11], and half-toning [4]. All of these techniques are
very stylized and can be captured procedurally or with min-
imal user input.

Stroke based techniques such as the WYSIWYG NPR
system [8] attach paint strokes on the surface of the object.
These strokes convey fixed features of the model or move
over the surface in response to lighting changes. The idea of
attaching paint strokes to the model is also used in painterly
rendering [12]. This approach completely automates the
painting process. The system also addresses frame-to-frame
coherence by reusing strokes throughout the animation. Fi-
nally, Webb et al. [16] convey both texture and color change
with shading by using the lapped texture method [13] to
place several levels of texture onto a mesh and blend be-
tween them with 3D texture hardware.

We present an alternative approach to non-photorealistic
shading. When artists paint an image in real life, they of-
ten replicate identical brush strokes to completely cover
the canvas. We model this process using texture synthesis.
We were particularly inspired by the texture transfer algo-
rithm [3] which is able to render an image in the texture of
a provided sample.

3. Paint Sample Processing

A scanned paint sample has two distinct properties: tex-
ture and color. We call the global color change across the
sample the color trajectory, as it defines a path through color
space. We assume that our paint sample is stored in a wide
horizontal 2D image and that the shading changes from left
to right (Figure 4(a)). Plotting the colors of the paint sam-
ple in RGB space reveals the rough shape of its non-linear
color trajectory (Figure 5).

To extract a smooth color trajectory from a given sam-
ple, we simply average the colors of each pixel column of
the sample image. This effectively filters the 2D sample into
a 1D image strip that represents a path through color space.
Unfortunately, the result contains a fair amount of streaking
due to local texture variations (Figure 4(b)). We run the fol-
lowing recursive algorithm on the trajectory’s set of RGB
points in order to sort the colors into a continuous gradi-
ent.

We seed the algorithm with the two endpoints of the un-
sorted trajectory. Given two sample colors A and B in RGB
space, we let M be their midpoint. We search for the sample
point C closest to M, but contained in the sphere of diame-
ter AB (see Figure 2). If such a point is found, the algorithm
runs recursively on A and C and on C and B. If no such point
is found, A and B are close enough to be considered neigh-
bors and the recursion stops by adding A and B into a linked
list representing the sorted color trajectory. Since the algo-

Figure 2: Finding the sample point halfway
between A and B.

rithm is sensitive to noise, an initial low pass filtering step
can be added if necessary. Figure 4(c) shows how the out-
put of the algorithm has effectively removed the streaking
effect while maintaining the shape of the color trajectory we
wanted to extract.

Texture change can be viewed as a local modulation of
the color trajectory. We represent it separately by subtract-
ing the color trajectory from each pixel column of the orig-
inal paint sample. We can then add an arbitrary color tra-
jectory back into this texture difference image to obtain a
sample with different colors but similar texture. Figure 6
shows a red-to-yellow sample being modified into a much
more creative color blend by a user-specified path through
color space. The approach is not perfect but maintains most
stroke features. This technique allows an artist to expand his
palette from relatively few paint samples.

4. Rendering Methods

4.1. Image Based Texture Synthesis

This approach was inspired by the image quilting and
texture transfer algorithm [3]. In two raster scan order
passes, small blocks of the sample texture are cut and
pasted, then “stitched” together to minimize visual discon-
tinuity. Texture transfer is achieved by adding constraints to
the initial block picking stage.

We use a lit grayscale image as a guide for the synthe-
sis. We run image quilting with the constraint that blocks
are only chosen from a narrow vertical strip around the ideal
shading level in the paint sample. This added constraint in-
troduces a very noticeable block structure because shad-
ing changes can occur on a much smaller scale than the
block size. Effros and Freeman use additional passes with
decreasing block sizes to solve this problem, but our knowl-
edge of the data enables us to solve this problem more ef-
ficiently. We simply run the synthesis on the extracted tex-
ture difference image of the paint sample (see section 3),
and add the color gradient back in on a per-pixel basis to
create the final image.

Creating animations with this method by naively resyn-
thesizing each frame from scratch produces a shower door

Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG’03)

0-7695-2028-6/03 $17.00 © 2003 IEEE

effect [7]. To improve temporal coherence we add an addi-
tional constraint: each block must match the previous frame
as much as possible (computed as a squared pixel difference
error). For small lighting or camera movements, this added
constraint works very well. However, for paint samples that
exhibit drastic texture variations this constraint makes it im-
possible for the synthesis to find suitable blocks after a few
frames. In this case we rely on blending to improve coher-
ence. We synthesize an entirely new set of texture every nth
frame and blend texture values between these keyframes
while recomputing the shading at every frame.

Rendering takes between 20 seconds to a minute de-
pending on image resolution. The two following sections
describe alternatives that run in real-time on commodity
graphics hardware.

4.2. View Aligned 3D Texture Projection

Texture synthesis is performed as a preprocessing step
only. We divide the input paint sample into 8 regions of
roughly constant shade level. We synthesize larger versions
of each section with image quilting. We found that gener-
ating 8 levels was adequate for the particular size of our
paint samples given that this is about how often the tex-
ture changes. We experimented with generating more lev-
els and with trying to keep strokes coherent from level to
level, but observed no substantial gain.

Our implementation runs on a GeForce 4 class graph-
ics card with each level set to 512×512 pixels. In order to
keep texture information separate from the color gradient,
we subtract the average color of each section and only syn-
thesize a texture difference image. We store this difference
image in a regular bitmap by mapping the interval [−1, 1]
linearly to [0, 1]. Additionally, we guarantee that the texture
be tileable using a simple masking technique [2].

We create a 3D texture from each of the synthesized lev-
els by stacking them in order of increasing shade level [16].
A simple pixel shader is used to access the 3D texture, ex-
pand the value back to the interval [−1, 1] and add in a color
gradient indexed by lighting value. We index the 3D texture
using the screen coordinates of the pixel for s and t, and
the lighting value for r, the depth texture coordinate. Stroke
density can be adjusted by scaling s and t. Since the tex-
ture is tileable, no seams are visible when the texture re-
peats over the image.

To avoid the impression that the texture is fixed to the
screen and that the mesh is “sliding” through it, we keep
track of an offset in s and t that we adjust when moving
the model. We increment this offset by the average screen
space displacement of the vertices most directly facing the
camera. This gives the illusion that the texture follows the
movement of the object, at least for the polygons that oc-
cupy most of the screen space. It is impossible to perfectly

move the texture along with the mesh since it is attached
to the view plane, but this approximation improves coher-
ence.

4.3. View Dependent Interpolation

The basic idea of this method is to assign specific tex-
tures to the important vies of the model and perform blend-
ing between these textures for all other views. Determin-
ing which views are important is left to the discretion of the
user. The only restriction we impose is that every face in
the mesh of the model must appear in at least one of these
views. This is necessary to ensure that there are no gaps in
the resulting image.

To create the texture maps we chose a small number of
views (typically 12-15) which surround the object. We cen-
ter the object in the view then use projection to generate tex-
ture map coordinates. We create an alpha mask using the dot
product of the viewing direction and the face normals. We
then use texture synthesis to create 3D textures, as was de-
scribed in section 4.2 and create a set of projected 3D tex-
ture maps for each view for interpolation. We address self-
occlusion with a scan-line algorithm as detailed in [6].

5. Metrics

In this section we outline our choice of metrics. Our er-
ror metric has three components: texture fidelity, shading
error, and frame to frame coherency.

We develop a metric that is capable of measuring the
types of texture distortion we expect to be present. These
distortions can be categorized as rotation, stretch or shear-
ing effects, and discontinuities from poor texture sampling.

The image similarity measures we use are com-
mon building blocks in image database retrieval algo-
rithms. The first measure is the difference in the color his-
tograms. Next, we filter the image to locate edges in the
horizontal, vertical, and diagonal directions. The sec-
ond measure is the difference between the edge image
histograms. Together, these two measures capture the dis-
tribution of color and edge directions within the image. To
compare two pixels we first find the s × s block surround-
ing the pixel, then build the histograms using that block.
We then measure the Euclidean distance between each
pair of histograms. To compare a pixel to the source tex-
ture we find the best pixel match. To speed up this process,
we pre-process the data and store it in a k − d tree. This al-
lows us to find the k nearest pixels in O(log3 n) time [1]. To
check that this metric captures texture distortion we eval-
uated it on three test cases: rotation, scale, and synthe-
sis distortion (image quilting algorithm with varying block
sizes). The results confirm the validity of the metric, as de-
tailed in [9].

Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG’03)

0-7695-2028-6/03 $17.00 © 2003 IEEE

The shading error metric calculates how close the tex-
ture at a pixel is to the desired texture for that shade value.
We first find the k pixels in the source texture that are the
closest to the test pixel, using the metric outlined above.
We then average the shade values corresponding to those k
source pixels and compare with the real shade value. By us-
ing k matched pixels (k ≈ 3-5) instead of a single pixel
we get a better average shade measure, since texture can be
fairly similar across a range of shade values.

We measure frame-to-frame coherence in image space
by comparing the histogram difference between the same
pixel location in frame i and frame i + 1.

6. Results

Each of the rendering techniques presented in this paper
has its distinct set of advantages and drawbacks. The im-
age based texture synthesis method is the best for individ-
ual frame quality, but takes a long time to render. The view
aligned 3D texture method is very attractive because it can
almost match the quality of the image based technique, but
runs in real time. The hardware does, however, introduce er-
ror when interpolating across levels in the 3D texture. The
view dependent technique also runs in real time, but keeps
the texture attached to the object’s surface.

Similarity Shading Temporal
Texture Synth. 0.07539 0.00536 0.00297

3D Texture 0.08048 0.00521 0.00016
View dep. 0.10197 0.00582 0.00547

Figure 3: Evaluating each rendering method
with our metrics on the green-yellow texture
of Figure 7.

We use the metrics outlined in section 5 to compare our
renderings (Figure 3). Our metric shows that the texture
synthesis provides the greatest amount of texture fidelity.
All methods capture shading with the same amount of er-
ror, which is the most important result since our goal is to
convey shading. Temporal coherence was measured in im-
age space. In this context, 3D texturing works best because
the texture is only translated from one frame to the next,
whereas texture synthesis must do blending to provide co-
herence. The view dependent method, while coherent in ob-
ject space, is not at all coherent when measured in image
space as the texture may be distorted by the curvature of the
mesh.

7. Conclusion and Future Work

We have demonstrated three rendering algorithms based
on texture synthesis for shading a mesh using a provided

paint sample. One possible direction for future work is to
constrain the synthesis to capture silhouettes in styles pro-
vided by the user.

References

[1] S. Arya and D. M. Mount. Approximate nearest neighbor
queries in fixed dimensions. In Proceedings of the fourth an-
nual ACM-SIAM Symposium on Discrete algorithms, pages
271–280, 1993.

[2] P. Bourke. Tiling textures on the plane (part 2)
http://astronomy.swin.edu.au/ pbourke/texture/tiling2/.

[3] A. A. Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. In Proceedings of SIGGRAPH 2001,
pages 341–346, 2001.

[4] B. Freudenberg, M. Masuch, and T. Strothotte. Real-time
halftoning: a primitive for non-photorealistic shading. In
Proceedings of EUROGRAPHICS 2002, pages 227–232,
2002.

[5] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-
photorealistic lighting model for automatic technical illus-
tration. In Proceedings of SIGGRAPH 98, pages 447–452,
1998.

[6] C. Grimm. Wucse-2003-53: Painting lighting and viewing
effects. Technical report, Washington University in St. Louis,
2003.

[7] A. Hertzmann and K. Perlin. Painterly rendering for video
and interaction. In NPAR 2000, pages 7–12, 2000.

[8] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowal-
ski, J. C. Lee, P. L. Davidson, M. Webb, J. F. Hughes, and
A. Finkelstein. Wysiwyg npr: drawing strokes directly on
3d models. In Proceedings of SIGGRAPH 2002, pages 755–
762, 2002.

[9] C. Kulla, J. Tuceck, R. Bailey, and C. Grimm. Wucse-2003-
54: Using texture synthesis for non-photorealistic shading
from paint samples. Technical report, Washington Univer-
sity in St. Louis, 2003.

[10] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized
rendering techniques for scalable real-time 3d animation. In
NPAR 2000, pages 13–20, 2000.

[11] A. Majumder and M. Gopi. Hardware accelerated real time
charcoal rendering. In NPAR 2002, pages 59–66, 2002.

[12] B. J. Meier. Painterly rendering for animation. In Proceed-
ings of SIGGRAPH 96, pages 477–484, 1996.

[13] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. In
Proceedings of SIGGRAPH 2000, pages 465–470, 2000.

[14] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-
time hatching. In Proceedings of SIGGRAPH 2001, page
581, 2001.

[15] P.-P. Sloan, W. Martin, A. Gooch, and B. Gooch. The lit
sphere: A model for capturing npr shading from art. In GI
2001, pages 143–150, June 2001.

[16] M. Webb, E. Praun, A. Finkelstein, and H. Hoppe. Fine tone
control in hardware hatching. In NPAR 2002, pages 53–ff,
2002.

Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG’03)

0-7695-2028-6/03 $17.00 © 2003 IEEE

(a) Red to yellow paint sample

(b) Color gradient before sorting

(c) Color gradient after sorting

(d) Extracted texture

Figure 4: Extracting color gradient
and texture from a typical paint sam-
ple.

(a) Color distribution

(b) Color trajectory

Figure 5: RGB Path
for Figure 4(a).

(a) A scanned paint sample

(b) User specified color gradient

(c) Applying the new gradient to the paint sample

Figure 6: Changing color transitions
without affecting texture.

(a) Paint samples (b) Image Based Texture Syn-
thesis

(c) View Aligned 3D Texture
Projection

(d) View Dependent Interpola-
tion

Figure 7: Rendering a skull mesh with various paint samples.

Proceedings of the 11th Pacific Conference on Computer Graphics and Applications (PG’03)

0-7695-2028-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

