Branch Diameter Measurement System

Ryan Schofield and Cindy Grimm

Abstract—Ground truth measurements are important horticul-
tural tools, but current methods of taking these measurements
are slow and/or inaccurate. This paper proposes a system that
uses two time-of-flight sensors, an RGB camera, a load cell, an
Arduino UNO, and a contact pole to take accurate, automatic
ground truth measurements for branch diameters and locations.
The system uses a 6 step algorithm, which involves aligning with
the branch, using optical flow for image segmentation, finding
the branch diameter in pixels, making physical contact with
the branch, and finally getting a branch diameter in inches.
This system was tested on one branch of a lab proxy tree. The
diameters found were all within 0.1 inches of the caliper measured
diameter.

[. INTRODUCTION

Ground Truth measurements are an important horticultural
tool. Limb to trunk ratios are an important factor in pruning
rules [1] and trunk diameter can be linked to shaking param-
eters for pistachio tree harvesting [2]. Ground truth measure-
ments can also be used to validate 3D reconstructions [3].

While ground truth measurements are important, current
methods for taking them are slow and/or inaccurate. Manual
methods, such as calipers, are time intensive and prone to
human error. Methods involving point clouds are noisy, in-
complete, and computationally expensive [4]. Computer vision
methods tend to underestimate the cross-sectional area of
trunks [5]. These measurements are further complicated with
the inconsistency of branch growth (angle, diameter, length,
etc.).

This paper proposes a system that takes accurate, automatic
ground truth measurements of branch diameters. The system
uses an end effector that attaches to a URS5 arm and houses
all necessary sensors. Using two time-of-flight (TOF) sensors,
the end-effector is automatically aligned perpendicular to the
branch being measured. A video is taken at this start position
while moving downward (negative z-direction). Two frames
are taken from the video to use for optical flow, which provides
image segmentation. The segmentation is processed and turned
into a mask that is analyzed to find the branch diameter
in pixels. The end effector moves forward, making physical
contact with the branch. This contact provides accurate depth
data to the system because the URS5 arm position is known.
This depth data is used with the mask to calculate the pixel
width and eventually transforming the diameter in pixels to
the diameter in inches. This system is verified on a lab proxy
tree.

II. METHODOLOGY
A. Hardware Design

In the custom end effector (Figure 1) there are five main
components: a) two TOF sensors, b) RGB camera, c¢) load

Real World

Fig. 1. Side view of end effector (upper left), top view of end effector (lower
left), and real world setup (right), as well as the coordinate frame in each
respective view.

cell, d) Arduino UNO, and e) contact pole. The pair of TOF
sensors are used to align the contact pole with these branch.
The sensors flank either side of the contact pole (upper left
figure 1) providing a single beam of depth data for each sensor
(see figure 2 Step 4).

The RGB camera provides video for optical flow and is
placed in the center above (positive y-direction) the contact
pole (upper left figure 1). After processing the optical flow
mask, a diameter in pixels is returned.

The load cell is used to register contact with the branch and
is placed centrally behind (negative z-direction) the contact
pole (upper left figure 1). This provides accurate depth data
to the system in the coordinate frame of the end effector.

The Arduino UNO is used to process the sensor data, such
as depth data from the TOF sensors and force readings from
the load cell. It is placed above (positive y-direction) the load
cell (lower left figure 1).

Finally, the contact pole is placed in the center of the end
effector (lower left figure 1) and makes contact with the branch
when the camera is 6 inches from the branch. This known
distance provides accurate depth information to convert image
measurements to real world measurements.

B. Algorithm Overview

This algorithm has 6 main steps: 1) initial angle and position
alignment, 2) correcting angle and position alignment, 3)
perform optical flow, 4) determine diameter in pixels, 5) make
contact with the branch, and 6) determine diameter in inches.

The goal of step 1 is to move to a position and rotate to an
angle that shows the branch vertical in the image. As seen in

STEP 1+ STEP 2

STEP 3 STEP 4 STEP 6

70° FOV

o Camera
Processing

500 1000 0 500 1000

Camera Frame Optical Flow

Segmentation Calculate Pixel Width

Physical Contact
With the Branch

Mask from
Optical Flow with
Bounding Box

After Rotation

Fig. 2. The algorithm in images. Step 1 and 2 rotates the end effector so the branch is vertical in the image frame. Step 3 shows the image segmentation
produced by optical flow. Step 4 shows the mask produced after processing the image segmentation and an example of a bounding box created. Step 5 shows
the branch making contact with a branch. Finally, step 6 shows how the pixel image length is calculated with the known field of view (FOV)

the left-hand side of figure 2, before the end effector is rotated,
the branch cuts diagonally across the image. After the rotation,
the branch is vertical and centered. This is an important step
to get an accurate diameter reading because when determining
the diameter in pixels, the branch is assumed to be vertical.
The goal of step 2 is to validate the branch angle and position.
How the branch position and angle are found in each step is
explained in the alignment section.

Once aligned, a 5-second video is taken as the arm moves
downward (negative y-position). This video is used in step 3
to perform optical flow to get an image segmentation. The
segmentation is processed into a mask that is used in step 4.
Only the middle 25% of the mask is used. In step 4, the black
pixels in each row are counted and the middle of the black
section of each row is noted. This gives several diameter and
middle line options. How these options are used are explained
in the diameter measurement section.

In step 5, the contact pole is magnetically attached to the end
effector and the arm moves forward until contact is registered
by the load cell. This position is saved and used in step 6.
The goal of step 6 is to calculate an accurate depth of the
branch at the time the video was taken. Once a depth is known,
the image length can be found because of the known field of
view. This is used to calculate the diameter in inches, which
is explained in the diameter measurement section.

The starting position of the URS arm is assumed to have
the end effector at 0 degrees and in front of the branch of
interest. The branch is assumed to have a 0 degree tilt in the
plane.

C. Alignment — Step I and 2

As stated above, the branch angle and position are found in
steps 1 and 2 of the system. Each step has a set of movements
to perform while collecting TOF data. For the initial guess
(step 1), the system moves up (positive y-direction) for 5
seconds at 0.1 m/s (approximately 0.5 meters). Figure 3 shows
the TOF data when passing an aligned branch and an unaligned
branch (in the image plane), with the lowest data readings
marked with a circle. At the lowest data reading, the y position
of the end effector is saved. For the aligned branch, the low

readings occur at the same time. However, for the unaligned
branch, the low points are far apart on the ¢-axis indicating that
the end-effector is not perpendicular to the branch. To make an
initial guess at the branch position, both lowest positions are
averaged. To find the branch angle, the difference in sensor
readings and the distance between the lowest positions are
used, as seen in equation 1.

diStreadings)
diStsenSO"‘S

(D

—1
Odesirea = tan (

Where:

o distreqdings: 18 the distance between the y positions of
the lowest readings for TOF1 and TOF2

o distsensors: 1S a constant value of the distance x distance
between the sensors

o Ogesireq: 1s the angle that is equivalent with the branch
angle

500 TOF1 filtered reading

— TOF2 filtered reading

8

Distance (mm)

T fitered reading
— TOF2 filtered reading

15 20 25 0 3 0 10 20 0 a0 50 60

Time (ms)

TOF Readings During Alignment
Step with Aligned Branch

TOF Readings During Alignment
Step with Unaligned Branch

Fig. 3. The TOF data as the end effector passes an aligned branch (left) and
an unaligned branch (right). The lowest point is marked as a circle for each
time-of-flight sensor during each pass.

The validation of the branch angle and position (step 2),
follows a different movement pattern than in the initial guess
(step 1). The system rotates clockwise and counterclockwise
in order to collect TOF data and end effector angle. Then
the system moves up and down (y-direction) to collect TOF
data and tool y position relative to the base. The movements
described here provide similar data to that found in Figure

3. After the movements are complete, the rotation data is
analyzed for the lowest TOF data and its corresponding angle.
The position data is analyzed for the lowest TOF data and
its corresponding ¥y position. This gives two angles and two
y positions. For the new branch angle and branch y-position,
the angles and y positions are averaged respectively.

The goal of steps 1 and 2 is to find a position and angle that
provides low positions that are aligned on the ¢-axis, similar
to the left-hand graph in figure 3.

D. Diameter Measurement — Step 4 and 6

There are two frames used in the diameter measurements.
The camera frame, which provides a diameter in pixels, and
the world frame, which provides a diameter in inches. The
pixel diameter is transformed into the inch diameter. To find
the pixel diameter, the height of the mask provided by the
optical flow is trimmed to the central 25% because this focuses
on the branch section in front of the camera. The black pixels
in each row are counted and considered the diameter for that
row. The middle value of the black pixel section is considered
the middle line for that row as seen in Figure 4. The 40%
most seen diameters and middles are kept to eliminate any
counts that come from an error. We propose 4 methods for
calculating the diameter in pixels from these counts: 1) mean,
2) median, 3) W1, and 4) W2. These methods will later be
compared to determine the most accurate method.

Row 20 :
. Diameter: 70 pix
I Middle: 602

Row 54 :
Diameter: 75 pix
Middle: 595
Row 98 :
Diameter: 80 pix
Middle: 587

Fig. 4. Example branch mask with possible row counts turned into a diameter
and middle line. All measurements are in pixels

The first method (mean) is to find the mean of the diameters
that are kept. Similarly, the second method (median) is to find
the median of the diameters that are kept. Method 3 and 4 are
more complicated. They require several bounding boxes to be
made. A bounding box and middle line can be seen in red in
Figure 5. The box spans the height of the trimmed mask and
the width of the diameter tested, and is centered on the middle
line. A bounding box is made with every diameter and every
middle line that was kept.

Winboxr = CS[rm] — cs[lm — 1] 2)

Center Line
’ Leftmost Rightmost
Value Value
~J
, _ Black Pixels
White Pixels QOutside Box
Inside Box

Fig. 5. A bounding box is seen in red with its center line. The vertical red
line denotes the leftmost value and the vertical right line denotes the rightmost
value.

boutbor = ((c — (rm —Im + 1) x 1) — cs[—1] — Winpox (3)

Where:

cs: is the cumulative sum

Im: is the furthest left column of the box being scored

rm: is the furthest right column of the box being scored

c: is the number of columns in the mask

r: is the number of rows being considered in the mask

Winboz: 15 the number of white pixels inside the bounding

box

boutboz: 18 the number of black pixels outside the bound-

ing box

The number of white pixels in each bounding box is

calculated using equation 2. A cumulative sum of the columns
in the trimmed mask is created and used in the equation.
The cumulative sum holds the number of white pixels in the
column to the left of the value that is being asked for. In
this equation, it is the number of white pixels to the left of
the rightmost value minus the number of white pixels to the
left of the leftmost value. The cumulative sum is used again to
calculate the number of black pixels outside the bounding box
and can be seen in equation 3. In this equation, the number of
pixels that exist outside the bounding box are calculated (in
the parentheses) and the number of white pixels outside the
box are subtracted.

SCOT €1 = Winbox boutbom (4)
SCOT €2 = 2% Winbox + boutbow (5)

For method 3 and 4, each bounding box is scored using the
white values in the box and the black pixels outside the box.
This is because the white pixels in the box and the black pixels
outside the box are unwanted, and we are trying to minimize
their presence. For method 3 (W1) the white pixels in the box
and black pixels out of the box are weighted equally, as seen
in equation 4. The diameter for this method is the diameter

from the lowest scoring bounding box. For method 4 (W2) the
white pixels are weighted twice as much as the black pixels,
as seen in equation 5. This is because it is more important to
not have white pixels inside the box than having black pixels
outside the box. Similarly, the diameter of this method comes
from the diameter of the lowest scoring bounding box.

Z./'nginch =2% disvideo * tan(ecamera) (6)
, iMYinch

Piinch = ——— (7)
tMGpix

Where:

iMGinch: 1S the width of the camera in inches

PiTinch: 18 the width of a pixel in inches

1MGpis: 1S a constant value of the width of the images in
pixels

Ocamera: 18 a constant value of horizontal field of view
of the camera

To move from the pixel diameter to the inch diameter, the
first step is to find the distance from the tree at the time of
the optical flow. This is done using the tool z position at the
time the optical flow video was taken and the tool z position
at the contact point. It is known that at the contact point, the
tool is 6 inches from the tree, so the difference of the two
z positions plus 6 is the distance from the tree at the time
of the optical flow. Using the distance from the tree at the
time of the optical flow, the width of the image in inches can
be calculated as seen in equation 6 and step 6 of Figure 2.
The pixel width in inches can now be calculated as seen in
equation 7. Using the four pixel diameters found in step 4,
four diameters in inches can be calculated from the diameter
in pixels and the pixel width in inches.

III. EXPERIMENTS

A. Lab Branch Experiment Setup

On a proxy tree in the lab, a branch set at O degrees was
chosen. When measured using calipers, the branch’s diameter
was 0.71 inches. The arm was placed below the branch
(negative y-direction) and 4 starting distances away from the
branch (negative z-direction). Starting distances away from the
branch were measured in inches from the camera and were 9,
8.75, 8.125, and 7.75. At each starting distance, 5 trials that
gave diameters were run. Each trial gave 4 diameters, one for
each of the 4 methods for finding diameters.

IV. RESULTS
A. Lab Branch Result

As seen in Table I, all the diameter methods produce an
acceptable result. The maximum error that is seen across all
trials is 0.086 inches (2.18mm). The best results come from
the W2 method which has a maximum error of 0.035 inch
(0.889 mm) and an average error of 0.0121 inch (0.31 mm).

Branch Diameter: 0.71

9in 8.75in 8.125in 7.75in
W1 0.056(0.030) | 0.032(0.028) | 0.071(0.015) | 0.058(0.007)
w2 0.003(0.007) | -0.014(0.004) | 0.004(0.006) | 0.024(0.007)
Mean 0.032(0.027) | 0.015(0.011) | 0.047(0.013) | 0.052(0.016)
Median | 0.039(0.016) | 0.015(0.018) | 0.048(0.017) | 0.050(0.013)
TABLE T

AVERAGE DIFFERENCE IN DIAMETER RESULTS IN INCHES (STANDARD
DEVIATION) FOR EACH DISTANCE FROM THE TREE AND EACH DIAMETER
METHOD.

REFERENCES

[1] J. R. Schupp, H. E. Winzeler, TM. Kon, R. P. Marini, T. A. Baugher,
L. F. Kime, and M. A. Schupp, A method for quantifying whole-tree
pruning severity in mature tall spindle apple plantings. HortScience,
52(9), 1233-1240, 2017. https://doi.org/10.21273/hortsci12158-17

[2] T. Homayouni, A. Gholami, A. Toudeshki, L. Afsah-Hejri,

and R. Ehsani, “Estimation of proper shaking parameters
for pistachio trees based on their trunk size”, Biosystems
Engineering, Volume 216,2022,Pages 121-131,ISSN 1537-5110.

https://doi.org/10.1016/j.biosystemseng.2022.02.008.

[31 S. A. Akbar, N. M. Elfiky, and A. Kak,”A novel framework for
modeling dormant apple trees using single depth image for robotic
pruning application”, IEEE International Conference on Robotics and
Automation (ICRA), Stockholm, Sweden, pp. 5136-5142, 2016. doi:
10.1109/ICRA.2016.7487718.

[4] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana.
“Automatic reconstruction of tree skeletal structures from pointclouds,”
ACM Trans. Graph., vol. 29, no. 6, pp. 151:1-151:8,Dec. 2010.
http://doi.acm.org/10.1145/1882261.1866177

[5] L. Gonzalez Nieto, A. Wallis, J. Clements, M. Miranda Sazo, C. Kahlke,
T. M. Kon, and T. L. Robinson, ”Evaluation of Computer Vision Systems
and applications to estimate trunk cross-sectional area, flower cluster
number, thinning efficacy and yield of Apple”, Horticulturae, 9(8), 880,
2023. https://doi.org/10.3390/horticulturae9080880

