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This paper takes a systematic look at methods for estimating the curvature of surfaces
represented by triangular meshes. We have developed a suite of test cases for assessing
both the detailed behavior of these methods, and the error statistics that occur for
samples from a general mesh. Detailed behavior is represented by the sensitivity of
curvature calculation methods to noise, mesh resolution, and mesh regularity factors.
Statistical analysis breaks out the effects of valence, triangle shape, and curvature sign.
These tests are applied to existing discrete curvature approximation techniques and
common surface fitting methods. We provide a summary of existing curvature estimation
methods, and also look at alternatives to the standard parameterization techniques.
The results illustrate the impact of noise and mesh related issues on the accuracy of
these methods and provide guidance in choosing an appropriate method for applications
requiring curvature estimates.
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1. Introduction

There has been substantial growth in the use of polygonal mesh representations for
complex free-form shapes. Advances in scanner technology, 3D sensors, etc., and
algorithms for constructing meshes from this coordinate data 232124 have made
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models for such objects readily available. Meshes support wide variations in com-
plexity and resolution for local regions of an object. They use a relatively simple
representation consisting of vertices (points sampled from the surface), and polyg-
onal faces defining connectivity between vertices. Today’s visualization tools are
extremely compatible with this mesh data structure. However, tools for extracting
surface properties, such as smoothness, from meshes have not yet progressed to
match the state-of-the-art for more traditional representations such as those used
in the Computer-Aided Design (CAD) environment.

Curvature is an intrinsic property of surfaces. It can be used to identify features
such as ridges and valleys, and planar, convex, concave, or saddle shapes. Surfaces
are segmented into regions based on these curvature features, and the segments and
features then used for object recognition and registration.

The ability to compute curvature from meshes is complicated by the lack of an
analytic definition for the surface shape. Meshes are defined at discrete vertices,
while curvature is a function of how the surface behaves in a local region around
the vertex. This is evident since curvature is based upon derivatives, which are
themselves defined as a limit function. Thus, some assumptions on the behavior of
the surface are required to estimate curvature for a localized set of vertices, such
as a given vertex and its neighbors.

Past experience indicates that curvature metrics tend to be very sensitive to
noise 2319, Scanners and sensors typically introduce some noise into the data. Small
amounts of noise may be compensated for by smoothing, while large amounts may
render the data unusable. Besides noise, the mesh resolution, i.e., how finely the
surface is sampled, and regularity, i.e., the uniformity in size and shape of the mesh
faces, also affect the accuracy of curvature estimates.

1.1. Contribution

In this work, we analyze curvature calculation methods applicable to triangular
meshes. These fall into three categories: (1) fitting methods, (2) discrete estimation
of curvature and curvature directions, and (3) estimation of a curvature tensor from
which curvature and curvature directions can be found. We develop a process for
evaluating the accuracy and stability of such methods using a suite of test cases that
highlight the effects of mesh factors such as valence and mesh regularity, in addition
to noise. We apply this suite to several existing algorithms and examine how reliably
different algorithms predict the curvature values. Our evaluation process compares
the error in mean, Gaussian, and principal curvatures, and the normal and principal
curvature directions.

Knowledge of the accuracy, and sources of error, allows us to select algorithms
that are robust and reliable for tasks such as shape matching and registration. An
understanding of the errors in the curvature calculations can be combined with
techniques from the Bayesian community to add confidence levels to the data, and
to develop an understanding of when and why a method might break down.
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Fig. 1. Sample Test Case Meshes. Left: 1-Ring Neighborhood (valence=6), Middle: 2-Ring Neigh-
borhood (valence=5), Right: 3-Ring Neighborhood (valence=4)

1.2. Previous Work

14,30,1,5,20,18,10 5y looked at curvature estimation from 3-

A number of researchers
D range images for computer vision applications. Range data provides a rectangular
array of sample data, usually in the form of pixels. Many of the methods operate
on an N x N window centered at a point, where N is an odd integer, typically 5
or 7. This window provides a natural orthogonal parameterization and well-defined
diagonals. Mean and Gaussian curvature can be computed from first and second
partial derivatives with respect to these preferred directions, or directly from the
array of sample data. Methods that rely on this regular organization of data are
not directly applicable for a general mesh.

Curvature estimation methods have also been developed specifically for meshes.
Meshes have a more general structure than range images. Mesh representations
have adjacency information embedded in the mesh connectivity, but without any
regular organization or preferred direction.

We define neighbors as vertices that are part of the same face. All of the vertices
that are neighbors to, i.e., share a common face with, a given vertex constitute its
one-ring neighborhood. We extend this to a two-ring neighborhood by adding all
of the neighbors of the one-ring vertices, and so on. Sample one-ring, two-ring, and
three-ring meshes are shown in Figure 1. A given vertex of the mesh can have an
arbitrary number of neighbors. These vertices need not be equidistant from the
given vertex or equally spaced around the one-ring neighborhood.

Methods for 3-D range images that rely on the regular array structure, natu-
ral orthogonal parameterization, or preferred directions, are not readily adapted
to mesh representations. However, methods that rely primarily on adjacency, such
as surface fitting, may be adapted to mesh representations if a suitable set of ver-
tices can be found. This set of vertices is typically an N-ring neighborhood, where
commonly N = 1.

Past evaluations have compared specific methods, generally for very regular
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meshes, and have looked at the effect of noise and the benefits of smoothing 36-%:16.
The impact of other mesh factors has often been ignored. A few studies have
compared a selection of curvature estimation methods, for example on range im-
ages 3325
varied factors such as mesh resolution 3%4, the amount of noise added to the data ©,
or the shape of the surface 7. Most of these studies evaluate these methods for a
very regular mesh. A few studies 371629 also apply the methods to irregular meshes,
but do not address the impact of the mesh irregularity.

A few papers have performed theoretical evaluations or experimental com-

, or meshes 3416, Others have focused on a particular method and then

parisons of selected curvature estimation methods. Meek and Walton 26 perform
asymptotic analysis for several methods using both regular data (as in range data)
and irregular data (as in meshes). The asymptotic behavior is important to insure
that the methods would converge to the correct value, but as they state, the re-
sults may not be suitable for comparing different methods for fixed size meshes.
While this asymptotic analysis was applied only to discretization and interpola-
tion methods, Cazals and Pouget 4 note that ‘interpolation fitting is always more
ill-conditioned than approximation’, so we might expect similar results for approx-
imation techniques, such as least-squares fitting methods.

Mclvor and Valkenburg 2, in comparing fitting methods for range data, note
that there is bias in the curvature estimates since cylindrical and spherical patches
cannot be represented exactly by a quadric. They also observe that for quadric
fitting of surfaces with large curvature magnitude or with large sampling noise, the
eigenvector associated with the surface normal may not have the smallest corre-
sponding eigenvalue, causing the principal curvature and curvature direction es-
timation to break down. Overall, their results show the quadric fitting method
performs better than the finite difference methods. Surazhsky et al. 34
several curvature estimation methods for meshes and conclude that a the Gauss-
Bonnet scheme (angle deficit) provides the best Gaussian curvature estimate, and
paraboloid (quadric) fitting is best for mean curvature estimations and second best

compare

for Gaussian curvature.

Overview: Section 2 discusses specific curvature estimation approaches for
meshes. In Section 3, various curvature estimation methods are evaluated using
our suite of test cases with parametric mesh perturbations and statistical analysis.
Section 4 summarizes the conclusions of this study and outlines possible areas for
future work.

2. Curvature Estimation

This section describes the methods that have been developed to calculate curvature
on meshes. There are three basic approaches. Surface fitting involves finding an an-
alytic function that fits the mesh locally. The curvature of the analytic function
is well-defined 22. Discrete methods develop either a direct approximation for the
curvature, or an approximation of the curvature tensor, from which curvature and
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Curvature Calculation Taxonomy - Fitting Methods
Princ | Crv | Req
Fit Param | Paper Data | Gauss | Mean | Crv | Dir | Norm
Range image methods
Flynn & Jain NxN X X
Quadric Grid Abdelmalek NxN X X
Stokely & Wu Voxels X X
Meclvor & Valkenburg Voxels X X X
Mesh methods
Quadric Planar | Hamann 1-Ring X X
Proj. Meek & Walton 1-Ring X X
Goldfeather & Interrante | 1-Ring X X
Gatzke & Grimm N-Ring X X
Quadric Natural | Gatzke & Grimm N-Ring X X
Cubic Planar | Goldfeather & Interrante | 1-Ring X X X
Arb. Order | Planar | Cazals & Pouget N Pts X X
Conic Implicit | Douros & Buxton N Pts X X X X
Radial Natural | Gatzke & Grimm N-Ring X X
Basis

Table 1. Curvature Calculation Taxonomy - Fitting Methods

curvature directions can be calculated. Discrete curvature equations are made from
the continuous equations by approximating integrals as a summation of contribu-
tions attributed to each face or edge adjacent to a vertex.

2.1. Fitting Methods

The primary discriminator between fitting methods is the function chosen to model
the local surface shape. Functions may be parametric, requiring a local parame-
terization of the surface near each vertex, or implicit. The chosen function is fit
separately at each vertex of the mesh, with the method solving for the coefficients
of the function. A local 3D coordinate frame, centered at the vertex, is useful for
parameterization, and may also simplify estimation when using implicit functions.

The second discriminator is the number of vertices fit by the function. If too
few vertices are fit, the problem is under-constrained. Therefore, a minimum num-
ber of vertices, based on the number of function coefficients, should be supplied.
Fitting the minimum number of vertices defines an interpolating function where
the function goes through each vertex. Fitting more than the minimum number
of vertices leads to an approximating function, which minimizes some measure of
distance from the function to the vertices, for example, a least-squares minimiza-
tion. Fitting methods are listed in Table 2.1. This table indicates the type of data
on which the algorithms operate, the parameterization method used, whether they
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require surface normals as input, and whether they compute Gaussian, mean, or
principal curvature estimates, or principal curvature directions.

2.1.1. Parameterization and Local Coordinates

Many parameterization methods utilize a local 3D coordinate frame with its origin
at the vertex. The normal vector at the vertex is frequently chosen as one axis of this
frame. The vertex normal can be computed as the average of the face normals for
the faces adjacent to the vertex, with various weightings applied, or as the normal
to the plane that best fits the vertex and some number of nearby vertices. For
methods that fit a surface to the data near the vertex, the normal can be replaced
with the normal calculated from the surface fit. A local coordinate system is formed
by the normal vector and two arbitrary orthogonal axes in a plane perpendicular
to this vector. Transforming to such a local coordinate system does not restrict the
curvature calculation, but does simplify the solution of the equations defining the
surface representation.

One class of fitting methods represents the surface as a function of two para-
metric variables v and v in the form:

F(u,v) = (2(u,v),y(u,v), 2(u, v))

The simplest representation is a height function, also referred to as a Monge patch.
The height function is oriented relative to the local tangent plane, so that

F(uvv) = (ua v, f(u,v))

The parametric coordinates of the vertices are found by projecting the vertices onto
the tangent plane. This projection can cause distortion in the relative distances
between points, and the projection of complex regions can even cause folding. As
an alternative, we can find a mapping that transforms the vertices to the plane
while minimizing some measure of distortion. Several algorithms '%#3! have been
developed to generate such mappings for a mesh that better preserve relationships
and avoid folding.

2.1.2. Quadric Fitting

A popular choice for f(u,v) is a quadratic function. Various forms of quadratic
function have been fitted to range data '#:1:33:25 and to mesh representations 17-26:34,
For a general second-order polynomial with six coefficients, applied to a height
function, we have:

2 = f(ui,v;) = Au? + Buyv; + Cv? + Du; + Ev; + F

where (u;,v;) is the parametric location of the 7*” point in the tangent plane, and
z; is the height of the point above (or below) the tangent plane. Here, i runs from
1 to N, where N is the number of vertices being fit. The coefficients A through
F are determined by solving a least-squares 232 problem. Two factors distinguish
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variations of this approach. First, the constant term, or the constant and linear
terms, can be dropped. Dropping the constant term forces the fit to go through
the vertex, while dropping the linear terms forces the normal to line up with the
z axis of the local reference frame. The second factor is the number of vertices to
include in the least-squares fit. One approach is to use just the vertices of the one-
ring neighborhood. Alternatively, the neighborhood can be expanded to include a
specified number of vertices in the least-squares fit. This larger number of vertices
may be required based on the number of coefficients or to improve the stability of
the solution. Cazals and Pouget # extend fitting to differential quantities of arbitrary
order, using higher degree truncated Taylor expansions, called osculating jets.

2.1.3. Cubic Fitting with Normals

Goldfeather et al. 16 expand the quadric method by using a cubic fit of a system of
equations formed from the coordinates and normal vectors at vertices on the one-
ring neighborhood. Their focus is on calculation of principal curvature directions
rather than the curvature magnitudes.

2.1.4. Implicit Conic Functions

Implicit functions provide an alternative fitting method that does not require a pa-
rameterization of the surface. Conic surfaces, particularly ellipsoids, have been used
for surface fitting in applications such as medical imaging. Douros and Buxton '°
extend this approach to a general conic:

az® + by +c2® +dey+exz+ fyz+gr+hy+iz+j=0

2.1.5. Other

15 investigate a variation of the quadric fitting method using an

alternate fitting function. In this variation of quadric fitting, they replace the pro-
jection to the tangent plane with a parameterization using the flattening algorithms

Gatzke and Grimm

of Desbrun et al.® and Sheffer3?. This parameterization is intended to reduce dis-
tortion, and is less likely to produce folding. In addition to the quadratic equation
fitting function, they explore using radial basis functions with a uniformly weighted
Gaussian, which has well-behaved derivatives at the data points.

2.2. Discrete Methods

One of the main motivations for discrete methods is to avoid the computational
costs associated with fitting algorithms. These methods do not involve solving a
least square problem and are very fast. However, many of these methods only
provide a subset of gaussian, mean, and principal curvature directions (unlike a
surface fit, from which any of this data can be calculated). Table 2.2 lists several
common discrete curvature estimation methods.
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Curvature Calculation Taxonomy - Discrete Operators

Princ | Crv | Req

Type Paper Data | Gauss | Mean | Crv Norm
Range image methods
Finite Diff. Mclvor & Valkenburg NxN X X
Srf Norm. Change | Flynn & Jain NxN X X
Cross Patch Stokely & Wu NxN X X
Mesh methods
Meusnier-Euler Chen & Schmitt N Pairs X

Hameiri & Shimshoni | N Pts X
Angle Deficit Stokely & Wu 1-Ring X

Meek & Walton 1-Ring X

Meyer et al. 1-Ring X
Angle Excess Stokely & Wu 1-Ring X
Integ. Abs. Mean | Dyn et al. 1-Ring X
Norm. Crv. Vec. Meyer et al. 1-Ring X
Spherical Image Meek & Walton 1-Ring X X

Table 2. Curvature Calculation Taxonomy - Discrete Operators

2.2.1. Spherical Image

The spherical image method 2 uses the unit normals of the one-ring vertices,
translated to a common origin, to define a region of a unit sphere, and approximates
Gaussian curvature as the ratio of the spherical area to the one-ring area.

2.2.2. Angle Deficit

The angle deficit method 332627 based on the Gauss-Bonnet theorem, approxi-
mates Gaussian curvature as 27 minus the sum of the angles for the faces at a
vertex, divided by an area associated with the vertex. Cohen-Steiner and Morvan ©
combine the angle deficit method with the integral absolute mean curvature form
(below) from the theory of normal cycles, and present a bound on the error for a

restricted Delaunay triangulation.

2.2.3. Angle FExcess

The angle excess or turtle-walking method 32 is similar to the angle deficit method,
but approximates Gaussian curvature as 2w minus the total turning angle for a
path around a vertex divided by the area enclosed by the path. The path is taken
as the boundary of a one-ring neighborhood.
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2.2.4. Integral of Absolute Mean Curvature

The mean curvature is computed as a summation over the edges adjacent to a
vertex of the angle between the faces adjacent to the edge multiplied by the edge
length, and divided by four times the area associated with the vertex. Dyne et
al. ' pair this method with the angle deficit method to use as a cost function when
optimizing the triangulation of a cloud of points.

2.2.5. Meusnier and Euler Theorem

Chen and Schmitt 5 estimate normal curvature and principal curvature directions

22 ysing three or more circular

by solving for the coefficients of the Dupin indicatrix
fits through a vertex and two of its neighbors. A normal section is the intersection of
the surface with a plane containing the normal vector. Since there are many triples
of points that can be used to create circular fits, the ones forming curves closest
18 use quadratic curves to

estimate the normal section between the vertex with its normal and neighboring

to a normal section are used. Hameiri and Shimshoni

vertices.

2.2.6. Curvature Normal Operator

Meyer et al. 27 compute mean curvature by using a summation to approximate the
integral of the Laplacian over the area associated with a vertex, and normalize by
this area. This area can be a mixture of Voronoi and Barycentric area, depending on
whether or not triangles are obtuse. They assume mild smoothness conditions and
incorporate local operators to denoise arbitrary meshes while preserving features.
The mean curvature is combined with Gaussian curvature computed using the
angle deficit method to derive principal curvatures, and a least-squares method is
employed to calculate principal directions.

2.2.7. Derivative Calculation

Csakany and Wallace 7 use a simplified approach to compute the second derivatives
at a vertex of a mesh. They first compute the surface normal by averaging adjacent
face normals. The normal defines the first partial derivatives. A substitution scheme
is used to directly compute the second partial derivatives, which can be used to es-
timate curvature. Their scheme is considered a simplification of an auto-correlation
method and a Hessian matrix method, and has been applied to both range images
and tessellated data.

2.2.8. Other

Tang and Medioni 3° compute the sign and direction of curvature, without fitting
or derivative calculation, using a voting scheme with weighting based on proximity.
Their technique does not provide a curvature magnitude estimate.
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Curvature Calculation Tazonomy - Curvature Tensor
Princ | Crv | Req
Type Paper Data Gauss | Mean | Crv | Dir | Norm
Range image methods
Integral Form. | Taubin 1-Ring X X
Hamieri & Shimshoni | N-Ring X X X
Mesh methods
Integral Form. | Taubin 1-Ring X X
Hamieri & Shimshoni | 1-Ring X X X
Per Face Theisel et al. 1-Ring X X X
Rusinkiewicz 1-Ring X X X

Table 3. Curvature Calculation Taxonomy - Curvature Tensor Estimation

2.3. Estimating the Curvature Tensor

Curvature tensor estimation is similar to the discrete methods, except that instead
of estimating the curvature directly, a discrete estimation of the curvature tensor
is created, and the curvatures and principal directions are calculated from the cur-
vature tensor. These methods tend to have computational complexity lower than
the fitting methods, but slightly higher than the discrete methods. Table 2.3 lists
several curvature tensor estimation methods.

2.3.1. Integral Formulation

Taubin3® proposes a method that estimates the tensor of curvature from the eigen-
values and eigenvectors of a 3 x 3 matrix, which approximates an integral as a
summation around a one-ring neighborhood. He also incorporates a smoothing step
for noisy meshes. A key benefit of his method is its simplicity, with the complexity
being linear in both time and space. Hamieri and Shimshoni '® propose modifica-
tions of Taubin’s method by expanding to more points (primarily for range data),
and weighting based on distance rather than triangle area, while Surazhsky et al. 34
proposed weighting based on angle. In the case of a general mesh, it is not clear
whether variation in distance or angle will dominate.

2.3.2. Per Face Tensor Calculation

A recent approach calculates the curvature tensor separately for each face 3729,

Given a face and the normal vectors at each vertex of the face, this curvature
tensor is well-defined. To get the curvature tensor at a vertex, the tensors for each
face adjacent to that vertex are averaged.
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3. Evaluations

Previous studies do not provide an understanding of the differences between mesh
size, regularity, and noise issues. Therefore, we develop a small number of tests
to highlight both the detailed behavior of curvature estimation methods and a
statistical analysis of errors.

The detailed behavior test case defines mesh parameters that distinguish be-
tween noise (perturbation normal to the surface) and triangulation effects (num-
ber, size, and regularity of triangles). We can then look at the error measures as
we change parameter values. For example, we can empirically determine if the esti-
mated curvature converges to the known value as the mesh cell size approaches zero.
The detailed behavior test case uses an idealized (extremely regular) mesh, except
for specific mesh parameter variations. This isolates the effect that specific mesh
factors have on the curvature estimation, and provides insight into how sensitive
different methods are to these factors.

The statistical analysis test case creates meshes containing vertices for a range
of valences, with both regular and irregular mesh regions, and analyzes the errors
with respect to the properties of these meshes. In practice, all of the detailed mesh
parameters are likely to vary in a mesh. The statistical analysis helps us determine
how the detailed behavior affects the overall behavior on a realistic mesh.

A suite of surface shapes, for which we know the exact curvature, is used to
avoid the bias of methods that may be optimal for one particular surface shape.
We use these tests to illustrate the behavior of several of the curvature estimation
methods discussed above.

3.1. Curvature Estimation Test Cases

Test cases are constructed by first generating a mesh in the X — Y plane, and
then projecting the mesh in the Z direction onto surfaces of different shapes, rep-
resented by the following equations, as used previously by Hamann '7 and Cazals
and Pouget *:

Sphere : x> +y? + 22 =4
Cylinder : 2> + 2°> =4
Ellipsoid : (x/3)* + (y/2)° + (2/4)* =1
FEllipticParaboloid : z = 2x* + 3*
Hyperboloid : z = 0.4(x? — %)
MonkeySaddle : z = 0.2(z® — 3zy?)
CubicPolynomial : z = 0.15(z> + 22%y — zy + 2y%)
TrigonometricFunction : z = 0.1[cos(mx) + cos(my)]

FExponential Function : z = 0.1e2xty=v"
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3.1.1. Detailed Mesh Parameters

In order to assess the local curvature at a point on a surface, we project a planar
triangular mesh onto the surface, centering the mesh at the target point. The mesh
is a regular N —ring neighborhood, where N €{1,2,3}. Sample two-ring meshes are
shown in Figure 1. The vertices are equally spaced along the rings around the target
vertex, except for variations of one of the seven parameters that are used to control
the qualities of the mesh:

e n, the number of vertices (valence) in the first (adjacent) ring, with the
second ring containing twice as many vertices,

e ¢, the scale (a relative distance from the target vertex to the first ring
of adjacent vertices, and between successive rings of vertices on the test
surface),

e dRp, the displacement of the target vertex normal to the surface,

e dR 4, the displacement of an adjacent vertex normal to the surface,

e d¢r, the displacement of the target vertex along the surface toward an
adjacent vertex,

e d¢ 4, the displacement of an adjacent vertex along the surface toward or
away from the target vertex, and

e df, the displacement of an adjacent vertex along the surface toward a neigh-
boring adjacent vertex.

The normal displacements, dRr and dR 4, represent noise, i.e., true deviation from
the actual surface geometry, and are applied after the mesh is projected to the
surface. dor, do 4, and df represent perturbations of the triangulation. Examples
of perturbations normal to and along the surface are shown in Figure 2. Moving
the target point radially toward a point on the first ring, or moving a point of the
first ring radially or circumferentially along the surface, reduces the regularity of
the mesh.

We also added an offset and rotation to consider different target points and mesh
orientations on the surface. This avoids bias that could occur if we looked only at
special points, such as the points on the major and minor axes of an ellipsoid, or due
to alignment of the mesh with the coordinate axes. For several of the algorithms
tested, the accuracy at these special points was better than the accuracy of the
method at a generic point on the surface.

The exact curvatures, normals, and principal directions are computed when the
mesh is projected to the surface. For methods requiring surface normals, we can
calculate approximate normal vectors or use the exact normals.

3.1.2. Statistical Analysis Case

For statistical analysis, we create a mesh containing 72 interior vertices (112 total),
with valence ranging from three to ten, and containing both obtuse and non-obtuse
triangles. This mesh is again created in the X — Y plane and projected onto one of
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Fig. 2. Detailed Behavior Test Cases for a mesh projected onto a sphere. Left: Noise component
normal to the surface at the target vertex (dR7) and at an adjacent vertex (dR4). Center: Mesh
regularity component based om moving the target vertex away from center(d¢r). Right: Mesh
regularity components based on moving an adjacent vertex toward/away from the target (d¢a)
or moving the adjacent vertex along the ring toward a neighboring adjacent vertex (df).

Statistical Analysis Test Case

4] 2D maech writh wralence 3 to 10 B Projected orto exponeritial amface

Fig. 3. Statistical Analysis Test Case. Left: The vertex layout in the X — Y plane has valence
ranging from three to ten (for interior vertices), and contains a mixture of obtuse and non-obtuse
triangles. Right: The mesh projected to an exponential surface.

our surface shapes. Figure 3 shows an example of the statistical analysis mesh pro-
jected to the exponential surface. Statistics for curvature estimation can be broken
down by (a) valence, (b) the presence or absence of obtuse angles at the vertex,
or (c) the sign of the actual curvature. This breakdown is used to determine the
impact of these three factors, and trends associated with the error in the curvature
estimation.
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3.2. Ezxperimental Results

In the following sections, we present selected results for the three categories of
curvature estimation methods.

3.2.1. Curvature Estimation based On Fitting

We look at the effect that various mesh parameters have on the error in the cur-
vature estimate. The first factor that we consider is valence (i.e., the number of
vertices making up the one-ring neighborhood around the target vertex) and its
impact on the Gaussian curvature estimate. By comparing the error as the cell size
decreases, we can plot the asymptotic behavior of the method. We will refer to this
as the convergence of the method, and will consider the convergence to be good if
the curve approaches the exact curvature value as the cell size approaches zero.

For one-ring neighborhoods with valences of three or four, the problem may
be under-constrained, depending on the number of coefficients in the particular
equation being fit. With enough vertices in the one-ring, or using multiple rings,
the fitting methods are relatively insensitive to the valence. The cubic fit based on
vertex locations and normals converges for all valences when using the exact surface
normals, but has poor convergence when using normals calculated as the weighted
average of the adjacent face normals.

As the cell size is decreased, corresponding to finer resolution, all of the fitting
methods, except the cubic fit with calculated normals, converge to the correct value.
Figure 4 illustrates the convergence for various fitting methods as a function of mesh
resolution on a paraboloid. The conic fit performs well for several surface shapes,
and as would be expected, is exact for the ellipsoid. However, the conic fit does not
perform as well for some other surface types such as the exponential surface.

The biggest factor distinguishing performance for the fitting methods is the
effect of noise normal to the surface, as shown in Figure 5. The quadric and conic
fitting methods based on one-ring neighborhoods are extremely sensitive to this type
of noise. The normals used with the cubic method effectively provide information
from a second ring, and this was the most accurate fitting method in this situation.
The fits based on two and three rings also performed well in the presence of noise
normal to the surface, with a three-ring fit having no clear advantage over the
two-ring fit. The Gaussian curvature estimates from the fitting methods were not
particularly sensitive to varying the vertex location along the surface.

3.2.2. Curvature Estimation Using Discrete Methods

The impact of valence is most pronounced for the angle deficit method, as shown
in Figure 6. This method converges to the exact value only for valence six. We
should also note the distinction between point curvature, which we are using as our
ground truth, and the integral of curvature over a region, upon which the angle
deficit method is based. These methods will produce similar results if the curvature
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Fitting Methods on a Paraboloid Surface
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Fig. 4. Comparison of fitting methods applied to a paraboloid surface. A valence of six was used
for the data shown. The cubic fit with computed normals does not converge to the exact curvature
of 0.367. The one-ring and two-ring fits behaved similarly, with the one-ring fits being a little more
accurate than the two-ring fits.

is relatively constant over the integration area, but may vary significantly in areas
of rapidly changing curvature. There may be applications where one or the other
type of curvature information is preferred, and this may lead to a different choice
of methods. However, these valence plots show significant variations for essentially
the same curvature region.

Like the one-ring fitting methods, the discrete curvature estimation methods 27
suffer from severe sensitivity to noise normal to the surface, as shown in Figure 5.
But they are also very sensitive to perturbations of the mesh vertices along the
surface, as compared to the fitting methods, as shown in Figure 7. This is likely
caused by the reliance on angles and areas of the mesh faces, which do not enter
directly into the fitting methods.

3.3. Curvature Tensor Results

Figure 8 illustrates Taubin’s integral eigenvalue method 36 and Hameiri and
Shimshoni’s '® modification of it on a sphere, calculated on a mesh centered at
the origin, and on a mesh offset from the origin. Both meshes are projected in the
Z direction to the same surface. Both methods match the exact curvature of the
sphere for the mesh centered at the origin, but are less accurate for the offset mesh.
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Hoise Effects on a Cylindrical Surface
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Fig. 5. Impact of noise normal to a cylindrical surface on the discrete and fitting methods. A
valence of six was used for the data shown. The discrete methods and one-ring fitting methods
exhibit extreme sensitivity to noise. The cubic fit behaves as a two-ring method and, along with
the two-ring quadric fitting methods, shows the least sensitivity.

The main difference is that the projection of the offset mesh is not normal to the
sphere, which degrades the mesh regularity. This effect is confirmed in Figure 9,
where we start with a regular mesh, and move one of the adjacent points along
the surface, generating errors from both methods. For the movement toward or
away from the target vertex, the modified method performs better, but the modi-
fied method is more sensitive to movement around the ring, as shown in Figure 10.
Being based on a one-ring neighborhood, they still suffer from severe sensitivity to
noise normal to the surface.

3.3.1. Statistical Analysis Results

Results from the statistical analysis test case were generated for several surface
shapes. They confirmed that the variations for some methods were very dependent
on the type of surface. Overall, considering both Gaussian and mean curvature, the
five most accurate methods were:

(1) The cubic fit with exact normals,
(2) The two-ring quadric planar fit,
(3) The two-ring conic fit,
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Valence Effects on a Cubic Pohmomial using the Angle Deficit Method
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Fig. 6. Impact of valence on the accuracy of the angle deficit method, applied to a cubic polyno-
mial. Increasing ¢ represents decreasing mesh resolution. Only valence six converges to the actual
Gaussian curvature (0.338). This method is extremely inaccurate for a valence of three, probably
due to the effect of obtuse triangles.

(4) The two-ring quadric natural fit, and
(5) The cubic fit with calculated normals,

The other methods had consistently larger error. The cubic fit using exact surface
normals was best, with the two-ring fits (planar, natural, and conic) having similar
errors. However, the two-ring conic fit and the cubic fit using calculated normals
had much larger standard deviation than the other top methods. The cubic fit with
exact normals and the planar and natural two-ring fitting methods were also most
consistent across differences in valence, triangle shape, and curvature sign. Just
looking at the overall errors can be deceptive, and mask deficiencies that are only
uncovered by more detailed statistical analysis, or through the use of the specific
noise analysis test cases. Results for the Gaussian and mean curvature calculations
were similar. Mean curvature tends to be better behaved since it is an average
rather than the product of the principal curvatures.

In order to place bounds on the accuracy of curvature estimates, it would be use-
ful if methods could be identified that consistently over- or under-predict curvature
magnitudes. In our evaluation, the cubic fit with calculated normals under-predicted
the curvature magnitudes in most cases, and the two-ring conic fit predictions were
larger (more positive or less negative) than the actual Gaussian curvature. However,
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Mesh Regularity Effects on a Saddle Surface
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Fig. 7. Impact of moving the target vertex along the surface toward a one-ring point (d¢r). The
valence is six for all methods. The discrete methods and the cubic fit with computed normals are
very susceptible to this mesh quality issue, while the other methods show little sensitivity.

as discussed above, these methods had other problems that limit the application
of these trends. The cubic fit using exact normals and the two-ring quadric fitting
methods had smaller error magnitudes, but the sign of the error did not exhibit a
consistent trend across the set of test shapes.

3.4. Discussion of Results

The accuracy for the conic fitting method was very dependent on the type of surface
being fit. This points to the importance of comparing methods for more than one
type of surface. If an evaluation case is based on the same equation as the fitting
method, the results of the evaluation will not necessarily reflect performance for
other surfaces to which the method will be applied.

The accuracy of fitting methods and the angle deficit method have been demon-
strated in previous studies, as mentioned in Section 1.2. OQur analysis confirms the
benefits of fitting methods, but identifies deficiencies in the angle deficit method,
and conic fitting methods. Even without noise, the statistical analysis indicates
that the two-ring fitting is superior to the one-ring fitting methods. The detailed
behavior suggests that noise normal to the surface severely degrades the one-ring
methods, which have higher noise sensitivity.

The cubic fit appears promising, but the sensitivity to the calculation of the nor-
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Taubin Method on a Sphere
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Fig. 8. Integral Eigenvalue method applied to a sphere as a function of cell size. A valence of six
is used for the data shown. The methods match well for a regular mesh centered at the origin,
but degrade due to the minor distortion from projection of an offset mesh.

mals is a severe drawback. The principal curvature direction calculations appeared
more stable and less sensitive to mesh regularity than the curvature magnitudes. See
Goldfeather'® for further discussion comparing calculation of principal directions.

The discrete curvature methods are appealing because of their speed. Fitting is
by its nature a more expensive computation. However, the sensitivity to valence,
noise, and mesh regularity limit the usefulness of the discrete curvature estimates
to very regular meshes for which either noise is absent or smoothing has been ap-
plied. The authors of these methods have proposed applying smoothing algorithms
for cases with noise. But smoothing can also mask surface detail if not applied
judiciously.

The fitting methods based on two or more rings have better overall performance,
albeit at a greater computational cost. In our tests, accuracies for three ring neigh-
borhoods did not warrant the increased cost due to the size of the fitting problem,
so a surface fit based on a two ring neighborhood is recommended.

Conic fitting is usually phrased as a least-squares solution that minimizes
F(x,y,2)%. Scaling the conic equation by a constant value does not change the
zero set, but it does change the value of F(z,y, z). For this reason, we have found
fitting to be more stable if the points are first transformed to a local coordinate
system centered around the origin, with the normal pointing in the y direction.
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Taubin Method on Sphere
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Fig. 9. Effect of perturbation of an adjacent vertex along the surface toward or away from the
target vertex. Both variation of the Integral Eigenvalue method show sensitivity to the mesh
regularity.

Fitting using radial basis functions did not yield suitable curvature estimates.
However, there are a variety of possible formulations that may be worth investigat-
ing.

Generating the parameterization by projecting to the tangent plane is quick
and easy. Alternative parameterization, based on a flattening ® of the local mesh,
avoids potential problems due to folding or distortion when the mesh is projected
to a plane. However, these techniques require more work and do not provide much
accuracy improvement. The behavior for a two-ring fit parameterized by a natural
flattening technique were similar to the two-ring planar fit.

These results demonstrate the value of our analysis methods to uncover the
detailed behavior of curvature calculation methods on triangular meshes, and an
approach to statistical analysis that can provide practical assessment of new or ex-
isting methods. Source code and data files for the metrics and methods used in this
analysis are available from www.cs.wustl.edu/MediaAndMachines/Curvature.

4. Conclusions

We have presented a suite of test cases that model mesh variations to assess the
impact of mesh resolution, regularity, valence, and noise on the accuracy of curva-
ture calculation algorithms for triangular meshes. In addition to fundamental mesh
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Fig. 10. Perturbation introducing non-uniform spacing around the ring. Again, both methods
exhibit sensitivity to this mesh regularity parameter.

issues, this suite includes statistical analysis that also addresses different aspects of
curvature estimation error. We have provided a summary of existing curvature esti-
mation methods and have applied our evaluation suite to the most common surface
fitting and discrete methods, to produce guidelines for choosing an algorithm.

Further work will investigate if the behavior of curvature estimation methods,
based on mesh resolution and other factors, can be used to place bounds on the
error in the curvature estimates.
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