
March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

International Journal of Shape Modeling
c© World Scientific Publishing Company

Parameterization using Manifolds

Cindy M. Grimm

Dept. of Computer Science and Engineering,

Washington University in St. Louis,
One Brookings Dr.,

St. Louis, MO 63130, USA

cmg@wustl.edu
http://www.cs.wustl.edu/∼cmg

Received (1 December 2002)

Revised (15 May 2003)

Accepted (10 March 2004)

There are a variety of surface types (such as meshes and implicit surfaces) that lack a
natural parameterization. We believe that manifolds are a natural method for represent-

ing parameterizations because of their ability to handle arbitrary topology and represent
smooth surfaces. Manifolds provide a formal mechanism for creating local, overlapping

parameterization and defining the functions that map between them. In this paper we

present specific manifolds for several genus types (sphere, plane, n-holed tori, and cylin-
der) and an algorithm for establishing a bijective function between an input mesh and

the manifold of the appropriate genus. This bijective function is used to define a smooth

embedding of the manifold that approximates or interpolates the mesh. The smooth
embedding is used to calculate analytical quantities, such as curvature and area, which

can then be mapped back to the mesh.

Possible applications include texture mapping, surface fitting, arbitrary topology
surface modeling, feature detection, and surface comparison.

Keywords: Splines; texture mapping; parameterization; n-holed tori

1991 Mathematics Subject Classification: 32C09

1. Introduction

There are many surface representations, such as meshes and implicit surfaces, that
lack a “built-in” parameterization, such as the one provided by spline surfaces.
The primary use of a surface parameterization in graphics is as a texture map.
A parametric surface equation is also useful for calculating differential geometry
entities such as geodesics and principal curvature. These metrics can then be used
for applications such as feature extraction, shape classification, and comparisons of
3D objects.

Parameterization is essentially the problem of flattening a surface (or piece
of a surface) to the plane without folding or creasing it. This creates a mapping
from the surface to the plane. Current approaches with meshes have focused on

1

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

2 Cindy M. Grimm

finding “nice” mappings that distribute distortions in well-behaved ways 10,30,44,50,2.
Implicit surfaces have received less attention 37,51,17 but the idea is very similar.
Surface fitting with a parameterized surface 32,25,11 also requires a mapping between
the domain of the fitted surface and the data; most of these fitting algorithms
contain a parameterization assignment and optimization stage before computing
control points. All of these approaches first divide the surface into one (or more)
planar regions, each of which is mapped to the plane.

The work presented here addresses a problem fundamental to all of the above
parameterization optimizations — topology. If the surface does not have a planar
(or toroidal) topology than the surface must be cut into one or more pieces that
are planar. The most common approaches are to let the user define the cuts 38,25,
to split along optimal lines 30,44, or to choose the seam lines based on a mesh
simplification method such as progressive meshes 20,41,39. These seams introduce
discontinuities in the parameterization which the user must then hide or otherwise
disguise.

A manifold representation addresses the topology problem by dividing the sur-
face into overlapping regions, each of which is parameterized locally. Where the
surface regions overlap we define functions which move between the overlapping
regions. These functions can be C0, Ck, C∞, etc. This provides a structured mech-
anism for blending or moving between different parameterizations. C∞ manifolds
can also be built for any topology (including surfaces with boundaries) since they
create multiple local parameterizations, not a global one.

Another property of a manifold representation is that it separates the topology
of a surface from the geometry. The topology is defined by the way in which the
parameterizations overlap. The geometry is defined by embedding the manifold in
Rn. We demonstrate this property by using the same manifold representation, with
different embeddings, to approximate several different surfaces. This has potential
uses in surface comparisons because points on two surfaces can be related to each
other through their parameterizations.

As an application example, consider segmenting a mesh M into areas of sim-
ilar Gaussian curvature. This segmentation could be used to, for example, clas-
sify shapes in a database. We first parameterize the mesh using the appropriate
manifold. Next, we define a continuous function on the manifold that returns the
Gaussian curvature at each point. This function could be built by either embedding
the manifold (Section 6) and analytically computing the curvature (Section 7), or
by calculating the curvature at each vertex 34 and fitting a function (defined on
the manifold) that interpolates or approximates those values. Given a point in the
domain we can always find a local parameterization that contains both that point
and a fairly large neighborhood around it. This means we never have to check to see
if we have crossed a boundary or seam line and therefore need to use a “different”
function.

In Section 3 we define manifolds in general, and discuss how to build a specific

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 3

manifold representation that is amenable to implementation. In Section 4 we define
specific manifolds for several topologies. These manifolds are designed to have sev-
eral properties that support operations in the domain of the surface, for example,
evaluating a metric over a local neighborhood.

The subject of Section 5 is how to establish a mapping from a mesh to a manifold
of the appropriate topology. We first define what a valid mapping is (note that this
mapping is at best C0 since the mesh is C0). Second, we provide an algorithm,
based on existing parameterization techniques, for constructing the mapping.

Given a mapping from a mesh to the manifold we can next define an embed-
ding of the manifold that approximates or interpolates the mesh (Section 6). The
embedding is used to calculate (analytically) approximations to differential geom-
etry entities, such as principal curvature and area, on the original mesh. We use
these quantities in Section 7 to evenly distribute points on a surface, divide the sur-
face into regions of uniform surface area, and trace lines along principal curvature
directions.

2. Previous work

We cover related work in two areas: manifold representations and parameterization
papers. There are also a wide variety of surface fitting techniques, some of which
address parameterization indirectly. The interested reader is referred to the excellent
survey paper by Lodha and Franke 32.

The majority of parameterization papers address the problem of texture map-
ping in particular, although a few have emerged from the finite element literature.
The primary issue in parameterization is how to flatten a mesh (or portion of the
mesh) into the plane while minimizing the resulting distortion. Techniques differ in
how they measure distortion, the complexity (non-linear versus linear) and conver-
gence guarantees of the optimization routine, whether or not they require a fixed
boundary, and guarantees about folding or overlapping. Some methods also allow
the user to influence the parameterization by adding point or gradient constraints.
Some papers also focus on how to partition or cut the mesh so that the resulting
pieces are minimally distorted.

One of the first texture mapping papers for meshes was by Maillot 33. The mesh
was first broken into an atlas based on regions with similar surface normals. The
individual sections were flattened by optimizing for minimal edge length distortion
(derived from an approximation of the first fundamental form), with an error term
to reduce triangle flipping.

Lévy has pioneered work with user-constrained texture mapping 29,28, using op-
timization metrics based on conformal measures 30. These techniques do not require
a fixed boundary and do not suffer from flipping (although they may overlap). The
original paper 29 used an iterative optimization scheme; this has been improved to
a linear optimization in subsequent papers 28,30.

Floater 10 introduced several parameterization methods based on the idea of

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

4 Cindy M. Grimm

placing a vertex at the weighted centroid of its neighbors. These techniques are
linear, and guaranteed not to fold if the boundary is fixed and convex. These tech-
niques have been applied to surface reconstruction 12 and extended to arbitrary
meshes 11 by the use of a base set of triangles to represent the topology of the
mesh.

Sheffer and Sturler 42 introduced an angle-based flattening method, which min-
imizes the deviation in angles. It is guaranteed not to fold, although it may overlap
itself. The optimization is based on a set of linear constraints on the angles which
guarantee that the angles around a vertex sum to 360, the angles in a triangle sum
to 180, and each disk around a vertex is a closed polygon. This work has been
extended to reduce distortion in scale 45. Sheffer also presents a technique to in-
troduce seams in a mesh in order to reduce distortion. The original paper searched
for minimal spanning trees 43 that joined vertices with high curvatures. Subsequent
work uses minimal Steiner trees and a notion of visibility 44 to find ideal seams.
The same seam-location approach can be used to constrain lines in texture maps 24

to particular paths on the mesh.
Another class of parameterization papers arise in the context of re-

meshing 11,8,40,26 and mesh compression 20. The basic idea is to find a mapping from
the triangles of a high-resolution mesh to the triangles of a coarse mesh approxi-
mation. The high-resolution mesh is partitioned into disk regions, each of which is
mapped to a triangle in the coarse mesh. These approaches work on arbitrary topol-
ogy meshes, but they do so by partitioning the mesh and solving the subsequent
independent parameterization problems (with the exception of Praun 40). Floater 11

optimizes the parameterizations using his existing method 10. Eck et. al. introduce
the Harmonic map optimization, which tries to maintain relative edge lengths. This
technique requires a fixed boundary and has no guarantees about folding. Lee et. al.
26 iteratively minimize the angle deformation as vertices are introduced going from
the coarse to fine level. In a similar manner, Praun et. al 40 iteratively reduce a
stretch metric as vertices are added to the coarse triangulation. The stretch metric
measures the ratio of the largest to the smallest stretch at a point. Both of these
approaches use a local optimization which, in general, is not guaranteed to produce
a global solution. Guskov 20 and Praun 41 both define techniques for finding paths
in the high-res mesh that correspond to edges in the base mesh. These paths are
optimized to produce good patch parameterizations.

Khodakovsy et. al. 23 produce a base set of patches which are individually
parameterized, but unlike other approaches, they optimize their base set of patches
along with the individual parameterizations. The parameterization of one patch
also influences the neighboring patches, which reduces discontinuities across the
boundaries.

Parameterization also arises in the context of mesh morphing and mesh align-
ment. For example, Alexa 1 embeds a spherical mesh using a relaxation approach.
An initial (small) set of vertices are placed on the sphere, and the remaining vertices
moved to the centroid of their neighbors. This method occasionally has problems if

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 5

the initial pinned vertices are not sufficiently spaced to prevent collapse. Praun 41

used the same base polyhedron for multiple meshes, then found a mapping from
the high-res meshes to the polyhedron. The initial alignment of the polyhedron was
produced by hand, but the individual patch alignments were automatic.

Desbrun 6 presents a parameterization technique that is a direct extension of
the conformal map error measures to a discrete surface. A variation of this method
does not require a fixed boundary and has a unique global solution, although it has
no guarantees about folding or overlapping.

Several approaches use geodesics to create parameterizations. The iso-parameter
lines are constrained to lie along geodesics 2. Bennis 3 used this approach to create
better texture maps for B-splines. Pedersen 37 allowed a user to draw geodesics on
implicit surfaces, and automatically generated a set of interior geodesics inside the
patch to constrain the interior. Zigelman 50 uses geodesics to establish distances
between points in a mesh and uses multi-dimensional scaling to embed those points
in 2D. This method has no guarantees about folding.

Several papers approach the problem of parameterizing non-zero genus surfaces
without partitioning them first. Haker et al. 21 present a conformal map for spherical
topologies. They first embed the mesh in the complex plane by solving a second-
order PDE (which can be formulated as a linear system for meshes), then use inverse
stereo projection to map back to the sphere. Gu and Yau 19 extend conformal
mapping to other topologies by using the appropriate periodic transforms; they
also formulate an alternative to Haker’s PDF which does not require an inverse
stereo projection, although it is an iterative optimization algorithm. Gotsman, et.
al. 14 present a generalization of the weighted centroid to the sphere. They define
what a weighted centroid means, and specific numerical methods for solving for
vertex locations on the sphere given a set of weights. In general, the difficulty in
solving this problem is that there exists a degenerate solution (where all the vertices
map to one point), unlike the planar case. Previous approaches 1,19,40 got around
this problem by constraining or localizing some part of the optimization.

It should be noted that the parameterization issue is somewhat separate from
the question of domain representation, which is the primary focus of this paper.
Any of the previous papers that map a mesh to a sphere, for example, can be used
to create the bijection between the spherical manifold and a genus one mesh. The
planar parameterization methods are less directly applicable to surfaces of non-zero
genus, although some of the distortion measurement concepts and user-interface
constraints are applicable. One thing to note is that techniques that operate on
arbitrary genus meshes by splitting the surface into disks 28,44,23 will, in general,
have lower distortion within the local parameterization than the global approach.
This is at the cost, however, of introducing discontinuities in the parameterization.

Several papers describe surface construction techniques using mani-
folds 15,16,35,36,31. Grimm’s approach 16 begins with a mesh and builds a manifold
with one chart per mesh element. The approach in Navau and Garcia’s first pa-

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

6 Cindy M. Grimm

per 36 builds a manifold for a planar mesh by mapping the boundary of the mesh
to the unit square. Charts and embedding functions can then be built on the unit
square. We adopt this approach for planar meshes. For arbitrary topology meshes
Navau and Garcia extend this approach 35 by first subdividing the mesh to isolate
extraordinary vertices. They embed sections of the mesh so that the overlap regions
are rectangular and blend together in the middle in a Ck fashion. Subdividing the
mesh to isolate the extraordinary vertices can result in a large number of patches;
however, the patches themselves are simpler than the ones in Grimm 16. Manifolds
have also been used for smoothing subdivision surfaces 4 by creating charts for the
region around a vertex and re-defining the embedding function on that chart.

The work in this paper is a continuation of previous work 15 in building simple
manifolds for parameterization. We include two new manifolds; cylinders (a tube
with two boundaries) and n-holed tori, the latter of which is described in detail
in a forth coming paper 18. We introduce an improved technique for creating a
guaranteed initial bijection between the mesh and the manifold in the sphere and
torus case. We also define an algorithm for creating an initial bijection for the n-
holed torus and cylinder cases. We also address the problem of defining barycentric
coordinates for non-planar topologies.

3. Manifold and atlas definitions

The original definition of a manifold can be found in the topology literature 47,27.
The basic idea is to analyze a complicated surface by defining mapsa from the
surface to R2. Each of these maps takes an open disk of the surface down to an
open disk in the plane, with no pinching or folding, and is called a chart. The
collection of chart domains must completely cover the surface, i.e., every point on
the surface must be in the domain of one or more charts. The collection of charts
is called the atlas. Any surface that can be described in this manner is considered
to be a manifold.

As a real-world analogy, consider an atlas of the world. Each of the pages rep-
resent a mapping from the earth (which is a sphere, and hence a manifold) down
to the plane. The pages overlap enough so that you can navigate from one page
to an overlapping one (although in general the overlaps do not line up perfectly).
For example, the page for France contains part of Spain, and vice-versa. The area
that is shared between the two pages is called an overlap region. The function that
maps from points in the France page to corresponding points in the Spain page is
called a transition function. Figure 1 shows a 2D example of defining an atlas on
the unit circle. This atlas defines a set of overlap regions and transition functions.

We now introduce definitions that formalize the concepts of atlas, chart, overlap
regions, and transition functions:

• S is an existing manifold.

aManifold theory is valid for a surface of dimension n embedded in a dimension m > n.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 7

0 1

t=0t=1
0 1

t=0

t=1
0 1

t=0

t=1

S, a manifold,
defined by (x,y)
=(cos θ, sin θ), θ in
[0,2π).

(1,0)

Define four charts by mapping ½ of S to
the unit segment (0,1). Every point,
except (0,+-1) and (+-1,0), is covered
by two charts.

Chart 2 Chart 3

)2/)((sin/1),(1
2 ππα += − yyx

))
2

sin(),
2

(cos()(1
2

ππππα −−=− ttt

))((cos/1),(1
3 xyx −= πα

))sin(),(cos()(1
3 ttt ππα =−

Chart 0

)2/)(sin(/1),(1
0 ππα +−= − yyx

))
2

sin(),
2

(cos()(1
0

ππππα ++=− ttt

Chart 1

0 1

t=0 t=1

))(cos(/1),(1
1 ππα +−= − xyx

))sin(),(cos()(1
1 ππππα −−=− ttt

Overlap regions.

5.0)(1,0 −= ssψ
Chart 0 Chart 1 Chart 2 Chart 3 Chart 0

5.0)(0,1 += ttψ

5.0)(2,1 −= ssψ

5.0)(1,2 += ttψ

5.0)(2,3 −= ssψ

5.0)(3,2 += ttψ

5.0)(3,0 −= ssψ

5.0)(0,3 += ttψ

0 1

0 1

)
2

1
,0(1, =−iiU

)1,
2

1
(1, =+iiU

Transition functions.

02, =+iiU

)1,0(, =iiU

Atlas

)()(11 ts ji
−− = ααDefined by points that map to the same point on S, i.e., .ji ctcs ∈∈ ,

Manifold

4 charts, (0..3),
each with co-
domain (0,1)

4 X 4 overlap regions 4 X 4 transition functions

�

�

�

�

��

�

�

=
=
=
=

+

+

−

0

)1,0(

)0,2/1(

)2/1,0(

2,

,

1,

1,

ii

ii

ii

ii

U

U

U

U

�

�

�

�

��

�

�

=
=

+=
−=

+

+

−

0)(

)(

2/1)(

2/1)(

2,

,

1,

1,

s

ss

ss

ss

ii

ii

ii

ii

ψ
ψ

ψ
ψ

Examples of points on
the manifold:

()

)5.0,2(

)75.0,2(),25.0,3(

)25.0,1(,75.0,0

A manifold built from
the overlap regions
and transition
functions by “gluing”
points together.

Fig. 1. Top: An atlas, consisting of four charts, defined on the unit circle. Each chart is a map
from 1/2 of the circle to a unit length segment. Middle: The atlas defines overlap regions and
transition functions. ψij is defined by first mapping from the chart i up to the unit circle using

αi, then back down to j using α−1
j . All indices are to be taken modulo 4, sin−1 returns a value

between ±π/2 and cos−1 returns a value between 0 and π. Bottom: A topologically equivalent
manifold.

• Let A be a finite set of maps from S to a disk in the plane. A is called an
atlas. Each element αc ∈ A is called a chart. The co-domain of each chart
we label as c ⊂ R2. Chart can also refer to the co-domain.

• A set of subsets, Uij ⊂ ci, where αci
and αcj

are charts in A and where
Uii = ci. These are the overlap regions. Uij may be empty. The atlas A
defines Uij in the following way. A point p ∈ ci is in Uij iff there exists
q ∈ cj such that α−1

ci
(p) = α−1

cj
(q).

• A set of functions Ψ called transition functions. A transition function, ψij ∈
Ψ, is a map ψij : Uij → Uji where Uij ⊂ ci and Uji ⊂ cj . Note that Uij and
Uji may well be empty. The Ψ functions can be built from A by defining
ψij to be αj ◦ α−1

i .

The atlases and charts found in the topology literature are primarily used to
analyze existing surfaces, i.e., given an existing surface S, build an atlas to show
that S is a manifold. In Grimm 16 this definition was inverted in order to produce

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

8 Cindy M. Grimm

a manifold from a set of charts and transition functions, without using a pre-
existing surface. Instead of starting with S and building an atlas, start by defining
a set of chart co-domains, overlap regions, and transition functions. Now define a
manifold from these objects by “gluing” together points that are the same. The
resulting object is a manifold, provided certain conditions are met 16, but what is
interesting is that it does not have an embedding in Rn, i.e., there is no specific
geometry associated with the manifold. The advantage of defining a manifold in
this manner is that it is very amenable to implementation. The bottom of Figure 1
shows a manifold, built from just the overlap regions and transition functions, whose
topology is a circle, but without any geometry. A point on this manifold is just a
tuple of all of the points that were “glued” together using the transition functions.
Note, though, that there exists a bijection between the manifold and the canonical
surface used to build it, i.e., every point on the circle corresponds to a unique point
on the manifold and vice-versa.

• A point p on the manifold is expressed as a tuple of chart points, one
tuple for each chart that contains the point p. A chart point is written as
[αc ∈ A, (x, y) ∈ c].

For this paper, all of the manifolds we build are of this form. We can always
embed the manifold to produce a geometric shape (see Section 6 and Figure 7 for
an outline of the process). In this way we can create several surfaces that have the
same domain (underlying manifold), but different geometries. As a technical note,
the continuity of a manifold built in this way is the continuity of the transition
functions; all of the manifolds built in this paper are C∞. The continuity of the
embedded manifold will therefore be the continuity of the embedding function.

To define the overlap regions and transition functions we use the method out-
lined in Figure 1. We first choose a canonical manifold S of the appropriate topology,
and then define an atlas on S. This atlas defines a set of charts co-domains, overlap
regions, and transition functions. We then “throw out” S and build a manifold (by
gluing) that is topologically equivalent, but is not tied to the geometry of S. A
point on this new manifold is defined as just a tuple of chart points.

To ensure that the “glued together” object is a manifold, we essentially
need to show that the transition functions are reflexive (ψii(p) = p), symmetric
(ψij(ψji(p)) = p), and transitive (ψij = ψkj ◦ ψik). Using an atlas defined on an
existing manifold S trivially ensures that the transition functions meet this criteria.

4. Specific manifolds

In this section we define specific manifolds for use in parameterization. Our goal
is to create manifolds that are easy to use, extensible, and simple. We define one
manifold for each genus, rather than defining a unique manifold for each mesh. This
pushes the complexity of the parameterization into the mapping between manifold
and mesh, and not into the manifold itself.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 9

The following are desirable properties for parameterizations:

• The co-domains of the charts are unit squares or disks (uniformality).
• The number of charts is kept small. Charts can always be added to an

existing manifold by subdividing existing charts.
• The domains of the chart overlap in disk-shaped regions, and they overlap

substantially (approximately one-third area). This maximizes the chance
that a local surface operation is contained within a single chart.

• The ability to partition the co-domains of the chart so that every point on
the manifold lies in exactly one chart partition. This is useful for operations
such as tessellation.

We use a canonical surface to build the manifolds. For each genus there exists
more than one possible atlas; we discuss our choice and describe other possible
manifolds.

For each manifold we also discuss how to partition the manifold by defining
a subset of the co-domain of each chart. Recall that, since the charts overlap,
each point on the manifold lies in one or more charts. Some operations, such as
tessellation, require that the manifold be partitioned into non-overlapping regions
that exactly cover the manifold. We define these regions by defining, for each chart,
a subset of the co-domain. More formally:

• Let {νi ⊂ ci}ci∈A be a partition of the manifold. We call each subset νi the
partition for chart i. Then for every point p on the manifold, αci

(p) ∈ νi

for exactly one chart i.

4.1. Plane

The plane manifold consists of a single chart defined on the uniform square. The
partition of the plane manifold is just the single chart, i.e., ν0 = c0.

4.2. Sphere

The minimal number of charts needed to cover the sphere is two, one on each
pole, that overlap in a ring around the equator. To create an atlas with n charts,
choose n evenly distributed points on the sphere and project the disk centered
on that point to the plane. There are two standard methods for parameterizing a
disk of the sphere; stereographic projection and the latitude-longitude approach.
Sterographic projection preserves circles centered around the projection point. The
latitude-longitude parameterization is well-behaved around the equator but pro-
duces increasingly more distortion around the poles.

We decided to use six copies of the latitude-longitude equation for our atlas, one
at each pole (see Figure 2). Each chart covers almost a half of the sphere. Six charts
is the best compromise between maximizing overlap, minimizing distortion in the
parameterizations, keeping the number of charts small, and maintaining symmetry.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

10 Cindy M. Grimm

A single
chart on the
sphere

Partitioning the sphere

Defining chart connectivity Chart par-
tition

Fig. 2. Building charts for the sphere. We use a cube to define the adjacency relationships between

the charts.

Also, we can use great arcs to partition the manifold into six equal regions (see
Figure 2). Because we use the latitude-longitude equations the great arcs map to
easily defined arcs in the chart co-domains.

θ = uπ, φ = v
3π
4
− 3π

8
(1)

α−1
0 (u, v) =

(
cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)

)
(2)

α−1
1 (u, v) =

(
cos(θ + π) cos(φ), sin(θ + π) cos(φ), sin(φ)

)
(3)

α−1
2 (u, v) =

(
sin(θ) cos(φ), sin(φ), cos(θ) cos(φ)

)
(4)

α−1
3 (u, v) =

(
sin(θ + π) cos(φ), sin(φ), cos(θ + π) cos(φ)

)
(5)

α−1
4 (u, v) =

(
sin(φ), cos(θ) cos(φ), sin(θ) cos(φ)

)
(6)

α−1
5 (u, v) =

(
sin(φ), cos(θ + π) cos(φ), sin(θ + π) cos(φ)

)
(7)

The inverse of these functions can be calculated using the appropriate arctan func-
tions. We give the functions in pseudo C code (atan2 returns the arc tangent in
the range ±π for the input (y, x)).

α0(x, y, z) =
(

atan2(y, x)
π

, (arcsin(z) +
3π
8

)
4
3π

)
(8)

α1(x, y, z) =
(

1 + atan2(y, x)
π

, (arcsin(z) +
3π
8

)
4
3π

)
(9)

The transition functions are built by taking ψij = αj ◦ α−1
i ; for example:

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 11

φ20(u, v) =
(

atan2(sin(6πv−3π
8), sin(uπ) cos(6πv−3π

8))
π

, (10)

(arcsin(cos(uπ) cos(
6πv − 3π

8
)) +

3π
8

)
4
3π

)
(11)

The overlap regions U0,1, U1,0, U2,3, U3,2, U4,5, U5,4, and their corresponding
transition functions, are empty.

To produce a partition of the sphere manifold we use six great circles, which are
the white lines on the sphere in Figure 2. This produces a slightly “bowed” rect-
angle with straight sides in each chart. Because we are using the latitude-longitude
equations, each partition boundary is a straight line in some chart. We chose the
chart equations so that the straight lines are always the vertical ones, i.e., the chart
partitions are identical for all charts. The start and stop points are determined by
where the arcs intersect. The equations for the vertical lines are:

(0.25, t ∈ (±
4sin−1(

√
1/3)

3π
+ 1/2)) (12)

(0.75, t ∈ (±
4sin−1(

√
1/3)

3π
+ 1/2)) (13)

To find the upper and lower boundaries of the partition region we map the straight
line from the overlapping chart into the current one using the appropriate transition
function.

4.3. Torus

We use the standard embedding of the torus that takes the square θ ∈ [0, 2π), φ ∈
[0, 2π) to the torus, but we only take 2/3 of the mapping for each chart:

T (θ, φ) =
(
(
3
2

+ cos(θ)) cos(φ), (
3
2

+ sin(θ)) cos(φ), sin(θ)
)

(14)

The minimal number of charts needed is one, but this provides for no overlap. The
next obvious choice is a 2 by 2 grid, or four charts. We decided against this because
any pair of charts overlaps at both ends, and we prefer simple disk overlaps. We
settled on nine charts, each of which overlaps 2/3 × 2/3 of the torus function’s
domain. Numbering with chart zero in the lower left corner and two in the lower
right corner we have:

α−1
c (s, t) = T

(
(
(c mod 3)

3
+ 2s/3)2π, (

(c/3)
3

+ 2t/3)2π
)

(15)

The inverse of this function is straightforward but requires some care with the
bounds. We give the definition in pseudo C code:

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

12 Cindy M. Grimm

A single chart Torus partition Four disks

Defining chart connectivity Chart parti-
tion

Fig. 3. Building charts for the torus.

r = ||(x, y)|| − 1 (16)

θ = atan2(z, r) (17)

φ = atan2(y, x) (18)

u =
{

θ
2π

θ
2π < 0

θ
2π + 1 otherwise

(19)

v =
{ φ

2π
φ
2π < 0

φ
2π + 1 otherwise

(20)

s =

{
(u+ 1− (c mod 3)

3) (c mod 3) = 2, u < 1
2

(u− (c mod 3)
3) otherwise

(21)

t =

{
(v + 1− (c/3)

3) c
3 = 2, u < .5

(u− (c/3)
3) otherwise

(22)

The torus transition functions are all translations by (± 1
4 ,±

1
4).

To produce a partition of the torus we take the interior [14 ,
3
4) × [14 ,

3
4) of each

chart. This tiles the domain of the torus.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 13

A single
chart on the
cylinder

Cylinder parti-
tion

Defining chart connectivity Chart partition

Fig. 4. Building charts for the cylinder.

4.4. Cylinder

The cylinder we define has no end-caps but is open at both ends (if it had end caps
it would be topologically a sphere). The cylinder is built from three charts, which
wrap in the u direction and have a boundary in the v direction (see Figure 4).
The canonical surface is a unit radius, unit height cylinder centered at the origin
(C(θ, h) = (cosθ, h− 0.5, sinθ)).

α−1
c (s, t) = C

(
(
(c mod 3)

3
+ s)2π, t− 0.5

)
(23)

θ = atan2(z, x) (24)

u =
{

θ
2π

θ
2π < 0

θ
2π + 1 otherwise

(25)

s =

{
(u+ 1− (c mod 3)

3) (c mod 3) = 2, u < .5
(u− (c mod 3)

3) otherwise
(26)

t = y + 0.5 (27)

The cylinder transition functions are all translations by (± 1
4 , 0).

The cylinder is partitioned by taking the middle stripe of each chart [14 ,
2
4)×[0, 1].

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

14 Cindy M. Grimm

0
2 1

4 3
7

5 6

)
2

1
,

2

1
(

)
2

1
,

2

1
(−−)

2

1
,

2

1
(−

)
2

1
,

2

1
(−

h
rα

γ

ω
β

1−c

1−a
1−b

a

1−d

b

d

c
0

1

65

4

3

2

7

2

0
1

3
6
5

7 4

Edge Inside Corner

�� �� � � �� � � � �� �	

� ��
 �� �� � ��

associations

�� � �� �� �� �� ��
 � � �� �

��
 �� �� � � �� � � �
 � � �
�� �� �� ��
 � � � � �� �� �

� � �� �� � � � � � � � �� � � � � � � !" �
� � � � �" � � �� �$#
%� �" � � �� " � α �� � � 2π/4n

Edge

Inside
Corner

& �" � �� � � � �� ��
 �� �� � � �� � � ��
 � � �

Inside-edge Corner-edge

Inside-corner Corner-inside

Edge-inside

Edge-edge Edge-corner

Overlaps

' � � �(�)* � �� � � � �� � ' � � �(�)* �+ 	 	 +)) � � �� �

, �� � � � � � � ! � � �� � - � � � � ��

4n-�
� �� � � � �
 � � �

., � �� � � � � � �� �� �� �� "
� � �" � � �� . � ��
 � � � � �� �� �� ��
� �� � " /� � � �" � � �� " � � ��

� �" � ! � �� � 0#

Fig. 5. Building charts for the n-holed torus. The manifold is a hyperbolic polygon with 2π/(4n)

corners (shown upper right) with edges associated as shown upper left. Top middle shows a two-
holed torus with the boundaries of the polygon marked. Left middle shows the charts on the
polygon; although the edge and corner chart are shown as several piece-wise mappings, when the

polygon edges are associated those pieces will be joined together. Middle right: The overlap regions
are one or more disks; the edge-edge overlaps may be one or three disks.

4.5. N-holed tori

We provide a very concise version of the n-holed torus here; a more detailed descrip-
tion can be found in an upcoming paper by Grimm and Hugues 18. The canonical
manifold is the hyperbolic polygon with associated edges. From topology, we know
that an n-holed tori can be built from a 4n-sided polygon by associating pairs of
edges (see Figure 5). Consecutive sets of four edges define a handle, with one loop
passing around the handle, the other one through the hole.

The hyperbolic polygon can be covered with a single chart, as in the case for the
torus, but this provides for no overlap. We instead cover each associated edge-pair
with one chart, place one chart in the inside of the polygon, and another that covers
the corners of the polygon, for a total of 2n + 2 charts. (Note that the corners of
the polygon become a single point on the n-holed tori.) The edge chart co-domains
are unit squares centered at the origin, while the corner and inside charts are unit
disks, centered at the origin.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 15

The overlap regions, unfortunately, are not single disks but instead are the
union of from one to 4n disks, as can be seen in Figure 5. This means that a single
transition function is built from several different maps, one for each disk. (Note that
this does not affect the continuity of the transition functions, so long as each of the
individual maps are continuous.) Fortunately, all of the maps are Linear Fractional
Transforms (LFT):

ψij(z) = Mz (28)

where M is a 2× 2 matrix representing the LFT and z is a complex number. LFTs
operate on the complex plane, taking circles and lines to circles and lines, have a
well-defined inverse, and the composition of two LFTs is a LFT. Each chart map
is one or more LFT that rotates and translates a subset of the polygon to a subset
of the unit square or disk. The two types of LFT we use are as follows (the first
rotates and scales, the second translates):

S(p) =
[
p 0
0 1

]
T (p) =

[
1 p
p 1

]
(29)

We define the transition functions as before, by first defining the chart maps to
the manifold (left middle of Figure 5) then use composition to define the transition
functions. Some care must be taken, however, to combine the correct combination of
LFTs. The location in the co-domain of the source chart determines which map to
the polygon to use. We then map the point to the polygon and determine where in
the domain of the destination chart the point lies. Once we have built the transition
functions the location in the source chart uniquely determines which transition
function to use.

First some definitions (refer to the top right of Figure 5):

ω =
2π
4n

(30)

h =

√
cos(ω) + 1

cos(ω) + 1− 2 sin2(ω/2)
(31)

r =
√
h2 − 1 (32)

Ω = h cos(ω/2)−
√

(h cos(ω/2))2 − 1 (33)

γ = h− r (34)

The inside chart is just a scale:

αi(c+ id) = S(1.8γ)(c+ id) (35)

The edge chart is split into two maps, one for each side of the polygon edge (j is
the index of the edge chart, numbered counter-clockwise in the polygon):

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

16 Cindy M. Grimm

pl = cos((4j + j mod 2)ω) + i sin((4j + j mod 2)ω) (36)

pr = cos((4j + 2 + j mod 2)ω) + i sin((4j + 2 + j mod 2)ω) (37)

pf = cosπ + i sinπ (38)

αej (c+ di) =
{
S(pl)T (h− r)S(7/8)(c+ di) c < 0.5
S(pr)T (h− r)S(7/8)S(pf)(c+ di) c ≥ 0.5

(39)

The vertex chart is split into 4n maps, one for each corner of the polygon. The
ordering of the wedges in the chart is not the same as the ordering of the polygon
corners. Let wj be wedge j in the chart, where wedge zero is centered on the
negative real axis and the wedges are ordered in the clockwise direction. Let Cj

be the polygon corner associated with wedge j. The polygon corners are indexed
counter-clockwise, with the first corner at ω/2. Rj is how much we need to rotate
wedge j in order to correctly align it with the polygon corner.

Rj+1 = Rj + 1 (40)

Cj+1 =
{

(Cj − 3) mod 4n (Cj mod 4) = 1, 2
(Cj + 1) mod 4n (Cj mod 4) = 0, 3

(41)

pc = cos((Cj + 1/2)ω) + i sin((Cj + 1/2)ω) (42)

pr = cos(−Rjω) + i sin(−Rjω) (43)

αwj
(c+ id) = S(pc)T (Ω)S(pr)S(δ)(c+ id) (44)

where δ is a scale factor related to β in Figure 5; we chose δ so that the radius
0.45 circle passes through β. The point β is found by solving for s in the following
equation:

αe0(−s, s) = αe1(−s,−s) (45)

which ensures that the corners of all of the edge chart partitions (which lie at
(±s,±s)) map to the same point β in the polygon.

To partition the manifold we create a rectangular partition in each edge chart
(±s,±s), and a wheel region in the corner and inside charts. The wheel boundaries
are found by mapping the edges of the edge chart boundaries into the inside and
vertex charts. This partitions the manifold into 2n+2 regions, as shown in Figure 5.

5. Mapping

We first define what a valid mapping is, then define the algorithm for creating a
mapping for each genus.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 17

5.1. Definition

We want to establish a bijective mapping M between every point on a mesh
{V,E, F} and the corresponding manifold. The points of a triangular meshb can be
described uniquely by:

• A set of vertices V , v ∈ <3.
• A set of edges E with e(vi, vj) = (1− t)vi + tvj , 0 < t < 1.
• A set of faces F with f(v0, v1, v2) =

∑
i βivi, 0 ≤ βi ≤ 1,

∑
i βi = 1.

We first establish a map between the vertices of the mesh and the
manifold. For each vertex vi we chose a unique manifold point p =
{(c1, (s1, t1)), . . . , (cn, (sn, tn))}. We then extend this mapping to the edges and
faces using barycentric coordinates and triangles in the manifold. In essence, each
triangle in the mesh is mapped to a triangle in the manifold.

5.2. Triangles and Barycentric Coordinates in the Manifold

A triangle on the manifold is defined by three points pi in the manifold. A point
in the interior of the triangle is defined by the barycentric coordinates 0 ≤ βi ≤
1,

∑
βi = 1. Exactly how this interior point is calculated is different for each

topology type. For the plane, cylinder, and torus manifolds we choose an appropriate
overlapping chart and use the standard linear sum:

βipi = α−1
c

(∑
i

βiαc(pi)
)

(46)

Because the transition functions for these manifolds are affine transformations, this
yields the same manifold point regardless of which chart we use.

For the sphere and the n-holed tori manifolds we define the triangles in the
corresponding canonical surfaces (sphere and hyperbolic polygon). There are many
possible definitions of triangles on the sphere; a recent paper by Praun 40 contains
a summary. We use the Gnomonic triangle mapping, which is invertible. Each of
the triangle points pi are mapped to the sphere using any of the overlapping charts
(Pi = α−1

c (s, t) for any tuple [c, (s, t)] ∈ pi). The three points Pi define a planar
triangle in R3 whose vertices lie on the sphere. The point P =

∑
i βPi in the planar

triangle is projected to the sphere by normalizing by the length of ||P − (0, 0, 0)||
(i.e., the ray through the point P to the sphere).

For the n-holed tori we construct triangles in the Poincaré disk, then map the
triangle to the equivalent Klein-Beltrami model 27 (where line segments are straight
lines), compute the linear sum, then map the point back to the Poincaré disk. To
determine the points in the Poincaré disk we find a chart that contains all three
points, then choose one of the LFTs that map from the chart back to the Poincaré

bIf the mesh is not triangular then we triangulate first.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

18 Cindy M. Grimm

disk and apply it to all three points. This may place the points outside of the
center hyperbolic polygon, but because the hyperbolic polygon tiles the unit disk
(see bottom right of Figure 5) the triangle simply “wraps” around the edge.

5.3. Valid Mapping

To ensure that the mapping does not fold we must guarantee the following:

• The mapping must preserve the ordering of the star of each vertex.
• The mapped edges must not intersect each other.
• For every face there must exist at least one chart into which all three of

the vertices map.

For the plane, cylinder, and torus we use barycentric coordinates and a planar
triangle to extend the map to the edges and faces. Let Mc(v) = (c, (s, t)) be the
map that takes a vertex to the chart c that contains all of the faces’ vertices. We
define the edge and face maps as convex combinations:

Mc(e) = (1− t)Mc(vi) + tMc(vj) (47)

Mc(f) =
∑

i

βiMc(vi) (48)

The transition functions of the plane, cylinder and torus preserve linear combi-
nations. This, with the properties listed above, guarantees that the mesh to manifold
map is injective. The torus map will be surjective as well, since leaving a portion
of the manifold uncovered would require folding the map at some point.

For the cylinder and plane case we must add an additional constraint that the
boundary vertices map to boundary points on the manifold.

Inverting these functions is simply a matter of finding a triangle in some chart
that contains the point and using the barycentric coordinates to map back to the
mesh.

For the sphere we use Gnomonic triangles instead of planar ones. We first take
the mesh and embed it in a unit sphere by placing the vertices at their designated
locations:

v′ = α−1
c (Mc(v)) (49)

where α−1
c is the original chart map from the chart to the unit sphere. If we have

chosen vertex locations that produce a bijection there are several things that hold
true about this embedding. First, none of the mesh faces intersect. Second, the face
normals all point out (or in). Third, if we take a ray from the origin to the boundary
of the sphere it will intersect the embedded mesh in exactly one point.

The following is equivalent to Equation 48, except that we use ray casting
through the point in the embedded triangle to find the equivalent point on the
sphere:

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 19

Mc(e) =
(1− t)α−1

c (v′i) + tα−1
c (v′j)

||(1− t)α−1
c (v′i) + tα−1

c (v′j)||
(50)

Mc(f) =
∑

i βiα
−1
c (v′i)

||
∑

i βiα
−1
c (v′i)||

(51)

To invert the map we find the embedded triangle that the ray to the point on the
sphere intersects. There is a simpler method than the one listed above for verifying
that the choice of vertex locations produces a bijection — simply make sure that
the face normals for all of the embedded triangles point out (or in).

For the n-holed tori we map each vertex to the hyperbolic polygon as in Equa-
tion 49. We then tile the Poincaré disk with the hyperbolic polygon 9 which also
replicates the points v′ in the disk. This means that there are multiple ways to
form a triangle from the mapped points v′i; choose the smallest one. Essentially,
this means that faces that cross the boundary of the hyperbolic polygon will use
points that lie outside of the center hyperbolic polygon (see bottom right of Fig-
ure 5). The entire Poincaré disk is then mapped to the Klein-Beltrami model, where
edges are straight lines. At this point, we can apply the standard planar barycentric
equations (Eq. 48).

To verify that the faces are oriented correctly in the disk, we simply check that
all of the normals are (0, 0, 1) (or (0, 0,−1)).

5.4. Building manifold mappings

To map the vertices from a mesh to a manifold we first partition the mesh into one
or more disks. Each of these disks is mapped to a corresponding chart partition of
the manifold, which has a known boundary. We use Floater’s algorithm 10 with his
shape-preserving weights for this mapping because it guarantees no folding with a
convex boundary, and produces minimal-distortion embeddings. This produces a
valid, bijective mapping, which we can then adjust if desired.

There are three basic mesh algorithms we use; a shortest path, a grow region,
and a projection.

Grow disk: Takes a disk in the mesh and expands it by adding faces adjacent
to the boundary edges. To ensure that the result is still a disk we only add a
face if the boundary edges and vertices the face contains are continuous in the
current boundary list. When the disk is the appropriate size we can optionally
run an additional routine that takes out any chinks or “fins” in the boundary (see
Figure 6).

Shortest path: Given two vertices, find the shortest path (in number of edges)
between the two vertices. We may mark a subset of the vertices as not accessible.

Project: Given a disk in the mesh, and locations (s, t) in the chart for the
boundary vertices, find locations for the interior disk vertices. We use Floater’s
algorithm 10 which requires solving an n×n matrix equation, where n is the number

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

20 Cindy M. Grimm

Fig. 6. A disk with its current boundary. All faces that share a boundary edge are potential faces

to add. We do not add faces whose boundary is not contiguous along the disk boundary. When the
disk is finished we can optionally remove “fins” and “chinks” by removing or adding the marked

face.

of vertices. There is one linear equation for each boundary vertex (Mc(v) = (s, t))
and one equation for each interior vertex (Mc(v) =

∑
wiMc(v∗)) that places

each vertex at the weighted centroid of its neighbors. We use Floater’s technique
to calculate shape-preserving weights; this calculation only needs to be performed
once for each mesh since the weights do not change.

Once we have a valid mapping we can “slide” it around by moving the locations
of the vertices, provided the new location of a vertex is within the convex hull
of the polygon defined by the star of the vertex. Grimm 15 provides one method
for minimizing distortion which involves re-projecting and re-scaling portions of
the parameterization in an attempt to more evenly distribute the faces across the
charts.

We introduce two alternative methods for reducing distortion. The first is to
run a relaxation method where each vertex is moved slightly in a direction that
minimizes some measure of distortion. Some care must be taken to ensure that the
new locations still produce a bijection. We run this relaxation method only a small
number of times (typically five) then check and re-project any offending vertices
using the re-project method described next. We currently move each vertex towards
the weighted centroid of its neighbors.

Re-project Our second method involves “cutting out” a convex portion of the
mesh and re-projecting it using the project method described above. We define a
convex region in some chart (typically an ellipsoid) and fix all vertices with edges
that cross the boundary of the convex region. These become the boundary vertices
in the project routine. The remaining vertices inside the convex region are then
re-projected.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 21

5.4.1. Plane

We use the Grow disk routine to find the boundary of the disk. We then evenly
space the boundary vertices along the edges of the uniform chart, making sure there
is a vertex that maps to each corner. We then use the Project routine to find vertex
locations for the interior vertices.

5.4.2. Cylinder

We first find the top and bottom boundaries of the mesh. These are mapped to
the t = 1 and t = 0 chart boundaries. We next split along a path from the top
boundary to the bottom boundary. The resulting edges are mapped to s = 0 and
s = 1. This produces a unique position for each vertex at C(2πs, 2πt). We then use
the re-project routine along the seam.

5.4.3. Torus

Find two paths that start and end at the same vertex, one that goes around the
hole and one that goes through it. The first path must be a loop that cannot be
contracted into a single vertex 27. To produce this loop we grow four disks, each
of which is seeded with a face that is as far as possible from the other three faces.
We then look for two disks that meet in two or more disjoint boundary segments
(Figure 3 shows an example torus with four example disks). We require that one
half of the loop go through one disk and the second half go through the other disk,
meeting at a mutually shared vertex from each of the disjoint boundary segments.
The second path is found by choosing a vertex on the first path and finding a path
that starts and stops at that vertex and does not cross the first path anywhere else.
This is a variation of Dey’s algorithm 7 which is proven to find the cut lines of the
torus.

Now cut the mesh along the two paths and map the result to the unit square.
This produces a unique position T (2πs, 2πt) on the torus for each vertex. To reduce
the effect of the artificial boundary we then run the re-project method around the
seam boundaries, starting at the join point.

5.4.4. Sphere

First we grow a disk that has approximately 1/6 of the total surface area of the
mesh. We project this disk into the partition of the first chart (which corresponds
to 1/6 of the area of the sphere). We then project the remainder of the mesh (which
is topologically a disk) into a rectangle using the same spacing along the boundary
as the first projection, but in reverse order. We next place a quadrilateral inside of
this rectangle, joining each corner of the quadrilateral to its corresponding corner of
the rectangle. This creates five quadrilaterals, which correspond to our remaining
five charts. We move the vertices of the primary quadrilateral until the sum of the

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

22 Cindy M. Grimm

mesh surface area of the triangles covered by each of the five quads is approximately
1/6 of the total surface area.

We run the re-project method along the seams (four edges and four corners).

5.4.5. N -holed tori

It is possible to find the loops that pass through and around the handles automat-
ically 46 using co-homology groups, but in general this is very expensive for large
meshes. We resort to user-intervention to define the loops; once these are located,
the mesh is split open along the loops and mapped to the hyperbolic polygon, again
using Floater’s 10 algorithm. Note that the hyperbolic polygon is not convex, and
therefore the solution may fold; this is an area for future work.

Again, we run the re-project method to reduce the effect of seams.

6. Embedding

To embed the manifold we first define for each chart c both a planar embedding
function Ec : c → R3 and a blend function Bc : c → R. We require that the blend
function and its derivatives be zero by the boundary of the chart, and that the
blend functions form a partition of unity. The planar embedding function can be of
any form; we define two types, one based on hierarchical splines 13 and one based
on radial basis functions.

The surface embedding is:

E(p) =
∑
c∈A

Bc(αc(p))Ec(αc(p)) (52)

where αc(p) extracts the R2 point for chart c, if there is one. If p does not contain
a point for chart c then Bc is defined to be zero. (Remember that a point p in the
manifold is just a list of chart-points.)

To build Ck blend functions that form a partition of unity 16 we first build a
proto-blend function in each chart using spline basis functions. We then “upgrade”
these proto-blend functions to blend functions on the manifold by defining them
to be zero for every manifold point not in the chart. This is why the proto-blend
function, and its derivatives, must be zero by the boundary of the chart. To create
a partition of unity we divide by the sum of all of the blend functions at that point;
to ensure that this sum is non-zero we define the proto-blend functions so that their
support covers the entire chart.

For the blend functions on the unit square co-domains we use the tensor product
of two spline basis functions, each of which has a support of (−1/2, 1/2) or (0, 1).
For the unit disk co-domains we use the distance from the chart center and a single
spline basis function whose support is the diameter of the chart. This produces a
radially symmetric blend function.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 23

If the blend and embedding functions are Ck continuous then the resulting
surface is Ck. To produce a visually pleasing surface it is best if the individual chart
embeddings agree where they overlap, i.e., Ei(αi(p)) = Ej(αj(p)); this ensures that
the blending above is purely a formality.

We have experimented with two types of embedding functions, splines (approx-
imating) and radial basis functions (interpolating). Approximating approaches are
preferable when the data points are known to have noise in them; interpolating ap-
proaches tend to over-fit this type of data, producing ripples in the surface. Figure 7
shows curvature plots on the bunny mesh for the two different approaches. Notice
that the spline embedding, while less accurate, also has less variation in curvature.

We use the same basic approach for both embedding types. First, each chart
embedding function is chosen to minimize the error between the embedding function
and the vertices within that chart:

min(
∑

i

||Ec(Mc(vi))− vi||) (53)

This lets us define each chart embedding function independently of the others. The
total error will be at most the sum of all of the errors in the individual charts,
scaled by their blend functions.

Fitting each chart is a standard parametric data interpolation problem 32, except
that the density of the points within the chart will, in general, be very uneven. For
this reason we proposed the use of hierarchical splines 13 in a previous paper 15. In
this paper we present an interpolating fitting technique using radial basis functions,
which are very well adapted to this type of scattered data interpolation.

6.1. Radial basis function embedding

Radial basis functions have both advantages and disadvantages for surface model-
ing. They can be Ck to C∞, depending upon the choice of kernel, they interpolate
the input points, and are amenable to scattered data interpolation. Disadvantages
are that they require n kernel functions to interpolate n data points and the sur-
face may vary wildly between data points, especially in the presence of noise. There
are techniques for dealing with noise and reducing the number of kernel functions
needed. This produces an approximation, not an interpolation 5.

We use the following formulation:

RBF (s, t) = a0 + a1s+ a2t+
∑

i

wid
2log(d) (54)

where the ai ∈ R3 and wi ∈ R3 are the variables, and d = ||ci − (s, t)||/2. This
kernel minimizes thin plate energy. The ci are the parameter-space coordinates of
the data points (in our case, the location of the vertex in the chart). The wi are

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

24 Cindy M. Grimm

��� ��� ��� � � �	
 �

� 	
 � ���

-

 �� � � 	
� � � �	 � �	 � �� �

manifold

Base

Ear

Tail

� � �	 � �	 � � �� �� � � �

Spline

RBF

���� � �� bijection

���� � �� � � �� � ��� !

"� # �$ �� � �%

Fig. 7. The bunny mesh is first embedded in the sphere, creating a bijection between the mesh and

the manifold. On the right are two possible embeddings, one defined using splines (approximating),
the other using RBFs (interpolating). The embeddings are colored by Gaussian curvature g: blue

is zero curvature (0, 0, 1), |g| < 0.05), red is positive curvature scaled by two (2g, 0, 0), and green

is negative curvature (0,−2g, 0).

weights assigned to each kernel function. The ai are the coefficients of a one-degree
polynomial. Solving for the wi and ai involves solving a matrix equation 5.

Figure 8 shows several example embeddings using radial basis functions.

7. Algorithms on the embedded manifold

The embedding of the manifold can be used to analytically calculate quantitative
measures such as curvature and area. The resulting data can be mapped back to
the original mesh, using the bijective mapping. These quantities are useful for the
operations described below, as well as applications such as surface segmentation
and comparison. For example, segmentation requires curvature (usually Gaussian)
defined at each point on the surface. These points are then grouped into regions
of similar curvature. Many image processing techniques exist for segmenting 2D
images; we can easily extend these to a manifold by running the algorithm in the
individual charts. Because the charts overlap, we can always find a local chart that
contains a given point, and a neighborhood around that point, in which to per-
form the desired operation. We also have a well-disciplined method for propagating
results from one chart to all overlapping charts.

We first show a sample derivative calculation to provide an example of the com-
plexity of the calculation. Second, we describe a standard algorithm for distributing

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 25

��� � � � � � � �� ��� 	
manifold

�� �
��� �

��� �� �� �� �� ��� �� �
� �� � �� � �� � � � � 	 � � � � � � � �� RBF-

� �� � � � � � 	 � �� � �
embedding

Bulge

Top

Fig. 8. Example radial basis function embeddings of different topologies. The original mesh is
shown texture mapped with a checkerboard for each chart; the transparency of the checkerboard
is set to the blend function Bc.

points on the surface. Third, we define an algorithm for finding regions of approx-
imately equal surface area. Fourth, we extend the algorithm to tracing lines that
follow the principle curvatures. All of these algorithms were originally developed for
planar, parameterized surfaces. We demonstrate the extension of these algorithms
to arbitrary topology surfaces via manifolds.

7.1. Derivatives

The calculation of derivatives, curvature, surface normals, and area is a straight-
forward application of partial derivatives. We outline the calculation of a derivative
to give a feel for the amount of calculation involved. For readers unfamiliar with
manifolds we point out that derivatives are taken with respect to a particular pa-
rameterization; in our case we may have several parameterizations at any given
point. Surface normal, curvature, and area will return the same result regardless of
the parameterization used, but derivatives will not.

The derivative of the embedding equation at a point (s, t) in chart c is the
derivative of the sum of blended embedding chart functions. This reduces to a sum
over only the overlapping charts:

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

26 Cindy M. Grimm

∂E(α−1
c (s, t))
∂s

= ∂
(∑

ci
Eci

(ψc,ci
(s, t))Bci

(ψc,ci
(s, t))∑

ci
Bci

(ψc,ci
(s, t))

)
/∂s (55)

where ψc,ci
(s, t) is the transition function that takes the point (s, t) ∈ c to the

point (s′, t′) ∈ ci. We will use the notation ψ0(s, t) to refer to the s component and
ψ1(s, t) for the t component. Notice that the sum is only taken over the charts that
overlap the point (s, t) ∈ c.

7.2. Point distribution

The goal of this algorithm is to place a set of points P on the surface such that any
surface point is within distance d of some point pi ∈ P and every point in P is at
least distance d from all other points. There are several ways of measuring distance.
We currently measure distance along the line in parameter space connecting the
two points. ∫ 1

0

A(t(u0, v0) + (1− t)(u1, v1))dt

Where A is the differential area at a point. If the two points do not lie in a shared
chart then we choose an intermediate chart and split the problem into three seg-
ments. Note that, for our manifolds, the maximum number of intermediate charts
we need is one. Which intermediate chart to use can be determined by the over-
lap topology; if there is more than one choice we choose the one with the shortest
parameter length.
One approach to distributing points is to place them on the surface and “push”
them away from each other, adding and deleting points as needed 4849. The basic
algorithm looks like this:

While points too close or point missing neighbor
For each point

Find neighbors encircling point
Move toward center of neighbors
If closest less than current minimum distance

Save pair as closest pair
If gap in neighbors

Add point in gap
If minimum distance less than some threshold

Delete one of closest pair

To keep this algorithm stable, creation and deletion should only be allowed on every
nth iteration, where n is around ten. Otherwise there is a tendency to delete the
recently created points and vice-versa.

The distance calculation is easier if every pair of points has a mutual chart; in
general this will be the case because a single chart is valid for approximately 1

3 to
1
2 of the surface.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 27

Fig. 9. Left: The surface with the center of the grid dots shown. Right: The grid cells.

“Gap” determination is performed in parameter space. We take all of the points
that lie within some distance d′ of the input point and map them to a single chart.
We choose d′ so that the distance on the surface between the point E(< c, (s, t) >)
and E(< c, (s ± d′, t ± d′) >) is approximately twice the desired spacing d. Each
neighbor resides at some angle (in parameter space) with respect to the input
point. A gap exists if the spacing between two adjacent angles is greater than some
threshold, usually taken as 3

4π.

7.3. Regions of similar area

The goal is to divide the surface area into roughly circular areas of a desired ra-
dius. Even surface divisions are useful for re-meshing and texture mapping. This is
accomplished using a greedy, iterative algorithm. The first step is to pick a point
and grow a circular region of radius d/2 around it, where d is the desired spacing.
Starting at any point that touches this region, we grow another circular region,
placing the new point in the center of the new region. We continue until every part
of the surface is in some region.

Starting with the centers of the current regions we grow circles of increasing
radius (up to d/2), until the circles bump into each other. Any unclaimed region
that is big enough receives a new point. Any region which is too small is deleted.
The points are then moved to the center of their regions and the process is repeated.

To implement this algorithm we chop up the surface (by marking out squares
in the domain) into regions each of which has less than πd2/10 area. We do this
using an n-ary partition of the center of each chart (see Figure 9). For each square
we keep track of the closest neighbors in each of the eight directions (there may be
multiple neighbors if the adjacent square was subdivided further). Growing disks is
accomplished using a flood-fill algorithm.

Figure 10 shows several surfaces with points distributed on them.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

28 Cindy M. Grimm

Fig. 10. From left to right: Equal area regions, distributing points across the surface, and lines

that follow principle curvature directions.

7.4. Principle curvature lines

It has been demonstrated that lines placed along directions of principle curvature
can help distinguish shape 22. One problem with using curvature calculated directly
from the mesh is that it tends to be noisy, making long lines difficult to draw
or requiring substantial filtering. An alternative approach is to use an analytical
surface approximation. To place lines along the direction of principle curvature we
begin at a random point in the manifold and follow the appropriate parameter
space vector (the curvature calculation computes the vectors in parameter space
corresponding to the minimum and maximum tangent curvature vectors). We stop
when we are too close (as measured on the surface) to an existing line or if the
curvature vectors disappear. The parameter lines are stored as polylines in the
domain.

We use an area calculation to ensure that the step size is a fraction of the desired
curvature line spacing. To speed up the nearest neighbor calculations we use the
n-ary partition described above to keep track of the distance to the closest line. As
each new point is added to the polyline we simply update the distances stored in
neighboring grid squares (until we are further away than the desired line spacing).

Principle curvature lines are shown in Figure 10. Note that no filtering was
applied to the curvature calculations.

8. Conclusion and Future Work

We have presented example manifolds for use with all genus surfaces without bound-
ary, and two surfaces with boundary. Given a mesh, we create a bijection between
the mesh and the manifold of corresponding genus. We can then embed the mani-
fold using any planar embedding technique, such as splines or radial basis functions.
This embedded, analytical surface can then be used to generate surface information
such as curvature, distance between two points on the surface, and surface area. It

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 29

should be noted that the manifold embedding formulation provides a mechanism for
converting any existing planar embedding approach to arbitrary topology surfaces
without the need for additional geometric constraints.

The eventual goal of this work is to provide a disciplined mechanism for con-
verting existing 2D, planar algorithms to surfaces of arbitrary topology. We are
currently exploring surface segmentation and comparison algorithms based on ex-
isting 2D image-segmentation algorithms.

In the area of parameterization, a better, automated technique for guaranteeing
a bijection for the n−holed tori is needed. Co-homology groups, combined with
mesh decimation, is a promising approach. We are also exploring the incorporation
of recently-introduced parameterization algorithms for non-zero genus meshes, as
well as user-provided constraints.

Acknowledgements

This work was supported in part by NIH grant AR44005.

References

1. M. Alexa. Merging polyhedral shapes with scattered features. The Visual Computer,
16(1):26–37, 2000.

2. P. N. Azaraiadis and N. A. Aspragathos. Geodesic curvature preservation in surface
flattening through constrained global optimization. Computer-Aided Design (CAD)),
33(8):581–591, 2001.

3. C. Bennis. Piecewise surface flattening for non-distorted texture mapping. Computer
Graphics, 25(4):237–246, 1991.

4. H. Biermann, A. Levin, and D. Zorin. Piecewise smooth subdivision surfaces with
normal control. Proceedings of SIGGRAPH 2000, pages 113–120, July 2000. ISBN
1-58113-208-5.

5. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum,
and T. R. Evans. Reconstruction and representation of 3d objects with radial basis
functions. Proceedings of ACM SIGGRAPH 2001, pages 67–76, 2001.

6. M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface meshes.
Eurographics), 21(2), 2002.

7. T. K. Dey and H. Schipper. A new technique to compute polygonal schema for 2-
manifolds with application to null-homotopy detection. Discrete & Computational
Geometry, 14:93–110, 1995.

8. M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Mul-
tiresolution analysis of arbitrary meshes. In SIGGRAPH, pages 173–182, 1996.

9. H. Ferguson and A. Rockwood. Multiperiodic functions for surface design. Computer
Aided Geometric Design, 10(3):315–328, Aug. 1993.

10. M. S. Floater. Parametrization and smooth approximation of surface triangulations.
Computer Aided Geometric Design, 14(3):231–250, 1997. ISSN 0167-8396.

11. M. S. Floater, K. Hormann, and M. Reimers. Parameterization of manifold trian-
gulations. Approximation Theory X: Abstract and Classical Analysis, pages 197–209,
2002.

12. M. S. Floater and M. Reimers. Meshless parameterization for surface reconstruction.
Computer Aided Geometric Design, 18(2):77–92, March 2001. ISSN 0167-8396.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

30 Cindy M. Grimm

13. D. Forsey and R. Bartels. Hierarchical b-spline refinement. Computer Graphics,
22(2):205–212, July 1988. Proceedings of SIGGRAPH ’88.

14. C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization. In
Siggraph, 2003.

15. C. Grimm. Simple manifolds for surface modeling and parameterization. Shape Mod-
elling International, May 2002.

16. C. Grimm and J. Hughes. Modeling surfaces of arbitrary topology using manifolds.
Computer Graphics, 29(2), July 1995. Proceedings of SIGGRAPH ’95.

17. C. Grimm and J. Hughes. Smooth iso-surface approximation. Implicit Surfaces, pages
57–67, 1995.

18. C. Grimm and J. Hughes. Parameterizing n-holed tori. Mathematics of Surfaces IX
(to appear), 2003.

19. X. Gu and S.-T. Yau. Computing conformal structures of surfaces. Communications
in information and systems, 2(2):121–145, 2002.

20. I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. In Proceed-
ings of ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference
Series, pages 95–102, July 2000.

21. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle. Confor-
mal surface parameterization for texture mapping. IEEE Transactions on Visualiza-
tion and Computer Graphics, 6(2):181–189, April - June 2000. ISSN 1077-2626.

22. V. L. Interrante. Illustrating surface shape in volume data via principal direction-
driven 3D line integral convolution. Computer Graphics, 31(Annual Conference
Series):109–116, 1997.

23. A. Khodakovsky, N. Litke, and P. Schröder. Globally smooth parameterizations with
low distortion. In Proceedings of ACM SIGGRAPH 2003, Computer Graphics Pro-
ceedings, Annual Conference Series, July 2003.

24. V. Kraevoy, A. Sheffer, and C. Gotsmann. Constructing constrained texture maps. In
Siggraph, 2003.

25. V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon meshes.
In SIGGRAPH, pages 313–324, 1996.

26. A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. Maps: Multires-
olution adaptive parameterization of surfaces. Proceedings of SIGGRAPH 98, pages
95–104, July 1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

27. S. Lefschetz. Introduction to Topology. Princeton University Press, Princeton, New
Jersey, 1949.

28. B. Lévy. Constrainted texture mapping for polygonal meshes. In SIGGRAPH, pages
417–424, 2001.

29. B. Lévy and J.-L. Mallet. Non-distorted texture mapping for sheared triangulated
meshes. In SIGGRAPH, pages 343–352, 1998.

30. B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. In SIGGRAPH, 2002.

31. P. Lewis. Modeling surfaces of arbitrary topology with complex manifolds. Master’s
thesis, Brown university, 1996.

32. S. K. Lodha and R. Franke. Scattered data techniques for surfaces. Scientific visual-
ization (Proc. Dagsthuhl), pages 181–222, 1999.

33. J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. Proceedings of
SIGGRAPH 93, pages 27–34, August 1993. ISBN 0-201-58889-7. Held in Anaheim,
California.

34. M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential geometry
operators for triangulated 2-manifolds. VisMath, jul 2002.

March 13, 2004 14:45 WSPC/INSTRUCTION FILE ws-ijsm

Parameterization using Manifolds 31

35. J. C. Navau and N. P. Garcia. Modeling surfaces from meshes of arbitrary topology.
Computer Aided Geometric Design, 17(7):643–671, August 2000. ISSN 0167-8396.

36. J. C. Navau and N. P. Garcia. Modelling surfaces from planar irregular meshes. Com-
puter Aided Geometric Design, 17(1):1–15, January 2000. ISSN 0167-8396.

37. H. K. Pedersen. Decorating implicit surfaces. In SIGGRAPH, pages 291–300, 1995.
38. D. Piponi and G. D. Borshukov. Seamless texture mapping of subdivision surfaces

by model pelting and texture blending. In Proceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference Series, pages 471–478. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, July 2000. ISBN 1-58113-
208-5.

39. E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures. Proceedings of SIGGRAPH
2000, pages 465–470, July 2000. ISBN 1-58113-208-5.

40. E. Praun and H. Hoppe. Spherical parameterization and remessing. In SIGGRAPH,
2003.

41. E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. Pro-
ceedings of SIGGRAPH 2001, pages 179–184, August 2001. ISBN 1-58113-292-1.

42. A. Sheffer, , and E. de Sturler. Angle based flattening of tesselated surfaces. In SIAM
Conference on geometric design and computing, 2001.

43. A. Sheffer. Spanning tree seams for reducing parameterization distortion of triangu-
lated surfaces. In Shape Modeling and Applications, pages 61–67, May 2002. ISBN
0-7695-1546-0, held in Banff, Canada.

44. A. Sheffer and J. Hart. Seamster: Inconpicuous low-distortion texture seam layout.
In IEEE Visualization (Vis02), pages 291–298, 2002.

45. A. Sheffer and E. D. Sturler. Smoothing an overlay grid to minimize linear distortion
in texture mapping. ACM Transactions on Graphics, 21(4), 2002.

46. Y. Shinagawa, R. Kawamichi, T. Kunii, and S. Ohwada. Developing surfaces. Shape
Modelling International, May 2002.

47. I. Singer and J. A. Thorpe. Lecture Notes on Elementary Topology and Geometry.
Scott, Foresman and Company, Glenview, Illinois, 1967.

48. G. Turk. Generating textures for arbitrary surfaces using reaction-diffusion. Computer
Graphics (Proceedings of SIGGRAPH 91), 25(4):289–298, July 1991. ISBN 0-201-
56291-X. Held in Las Vegas, Nevada.

49. A. P. Witkin and P. S. Heckbert. Using particles to sample and control implicit
surfaces. Computer Graphics, 28(Annual Conference Series):269–277, 1994.

50. G. Zigelman, R. Kimmel, and N. Kiryati. Texture mapping using surface flattening
via multidimensional scaling. Transactions on Visualization and Computer Graphics,
April 2002.

51. R. Zonenschein, J. Gornes, L. Velho, and N. Rodgriguez. Towards interactivity on
texturing implicit surfaces: A distributed approach. In Ninth international conference
in central Europe on Computer Graphics, visualization and interactive digital media
(WSCG 2001), 2001.

