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Abstract. Automatic detection of features in three-dimensional objects is a crit-
ical part of shape matching tasks such as object registration and recognition. Pre-
vious approaches often required some type of user interaction to selectfeatures.
Manual selection of corresponding features and subjective determination of the
difference between objects are time consuming processes requiring a high level
of expertise. TheCurvature Map represents shape information for a point and its
surrounding region and is robust with respect to grid resolution and mesh regular-
ity. It can be used as a measure of local surface similarity. We use thesecurvature
map properties to extract feature regions of an object. To make the selection of the
feature region less subjective, we employ a min-cut/max-flow graph cutalgorithm
with vertex weights derived from the curvature map property. A multi-scale ap-
proach is used to minimize the dependence on user defined parameters.We show
that by combining curvature maps and graph cuts in a multi-scale framework, we
can extract meaningful features in a robust way.

1 Introduction

Advances in three-dimensional (3-D) scanning capability are providing ready access
to 3-D data. Automatic detection of features in 3-D objects is critical for tasks such
as object registration and recognition. For example, identifying corresponding regions
between two similar surfaces is a necessary first step towardalignment and registration
of those surfaces. A fundamental question is: What constitutes a feature? Man-made
objects often have well-defined features such as edges, but features on natural shapes,
such as the wrist bones shown in Figure 1, are more subjective. Furthermore, such
shapes can have subtle variations, the importance of which may not be obvious.

We aim to detect subtle shape features in a robust way with a fully automated pro-
cess. The types of features we expect to be useful are peaks, pits, ridges, and valleys.
Important features may be of various sizes within one object. We need not (in fact, can-
not) detect every feature, and the features we do detect may or may not be unique. We
just need to identify enough features to resolve any ambiguities during shape matching.
It is desirable for feature detection to be consistent, robust, independent of the mesh
resolution, and relatively insensitive to noise.

Previous approaches often required some type of user interaction to select features.
Manual selection of corresponding features and subjectivedetermination of the differ-
ence between objects are time consuming processes requiring a high level of expertise.
In contrast, our approach is entirely automatic.



Fig. 1. Bones making up the human wrist. Natural objects have subtle shape variations that are
challenging to characterize.

1.1 Approach

In this paper we present a feature detection algorithm basedon theCurvature Map [1],
which at a point represents shape information for the point and its surrounding region.
A min-cut/max-flow graph cut algorithm, popular for image segmentation tasks, is em-
ployed to identify features at various scales. Results frommultiple graph cuts are com-
bined in a novel manner to produce a final feature set. A two-step multi-scale approach
eliminates the need for user interaction, and for tuning parameters based on a particular
application. This algorithm can extract meaningful features in a robust way.

Section 2 focuses on related work in object recognition, feature detection, and seg-
mentation. In Section 3 we give an overview of the algorithm.Details omitted due to
space constraints can be found in [2]. Results for various shapes, and conclusions and
possible areas for future work, are presented in Sections 4 and 5 respectively.

2 Related Work

The two main areas of research related to this work are shape representations or sig-
natures, and feature segmentation. Object recognition, correspondence, and registration
often rely on similarity measures to quantify the similarity or dissimilarity between ob-
jects by computing distances between shape representations, such as sets of points, fea-
ture vectors, histograms, signatures, or graph representations. Methods that are more
applicable to 2D images rather than 3D object representations will not be discussed
here. See [3] for a survey of methods applied to medical images.

Graph representations, such as skeletons [4, 5] and multi-resolution Reeb graphs [6],
like algorithms based on point sets [7, 8], can be useful for computing similarity and
registration. But these methods are primarily global rather than local and often can be
sensitive to the distribution of the mesh points.

Signatures may be global or local, and provide a compact representation that re-
sults in more efficient comparison at the expense of their ability to discriminate shape.
Methods used for shape retrieval, such as shape distributions [9], spin images [10], and
spherical spin images [11], tend to be global measures, and generally provide limited
discrimination between similar shapes.



Signatures of a more local nature include statistical signatures [12] and shape con-
texts [13], but the use of local point-to-point distances and angles, and sampling of
points respectively, limits the suitability of these methods for detailed shape compar-
ison. The point fingerprint [14], which defines an irregularity measure for geodesic
circles around a point, and the surface curvature signature[15] rely on high curvature
feature points. Unlike these approaches, we are looking forsubtle shape differences that
require more than signatures just at ‘interesting’ points.

Feature regions can be extracted based on critical points (peaks, pits, and passes) and
associated ridge and valley lines. In [16], smoothing was required as a preprocessing
step. Peak (pit) areas surrounded by valley (ridge) cycles then provide the candidate
feature areas to be selected interactively. The uncertainty as to an appropriate amount
of smoothing and the narrow definition of a feature are drawbacks to this approach.

Volume decomposition based on topology [17] or morphological tools [18] provides
volumetric features rather than surface features. Surfacesegmentation methods, which
identify local regions of an object, have been based on the sign of the curvature [19],
isosurfaces and extreme curvatures [20], and watersheds ofa curvature function [21,
22]. Methods that identify salient features [23, 24] have also been developed. However,
these methods do not yield the types of features we are interested in for shape matching.

Graph cut algorithms have been used to segment images [25] and medical datasets
[26]. They are effective at assigning the vertices of a graphto either a feature (fore-
ground) or background set, based on graph properties such asthe gradient of the image
intensity. Some of these methods employ an interactive step, where the user identifies
feature and background seed points, to guide the algorithm to the objects that are to be
separated. By treating our mesh as a graph, we can apply the graph cut algorithm and
identify features based on the resulting segmentation.

3 Feature Detection Method

The basic feature shapes we are looking for include the peak,pit, ridge, and valley. The
common link between these features is the dependence on the magnitude of the mean
curvature. The curvature map [1] provides a context for eachpoint that can be used to
define a local shape property to help identify these features.

3.1 Local Shape Property

For a vertexp, the 1-D curvature map,Kmap(p), is defined by two curves representing
the average mean and Gaussian curvature as functions of distance from the vertex. We
will refer to these curves asMean(Kmap(p)) andGauss(Kmap(p)) respectively.
We define our local shape propertyS as

S(p) =

∫ R

0

Mean(Kmap(p))(r)dr

whereR represents the radius corresponding to the maximum featuresize.



Algorithm 1 Multi-Scale Feature Detection
Read Curvature Map (Kmap) for MeshM

for Kmap radiusR from Rmin to Rmax do
ComputeS as the integral of theKmap mean curvature component from0 to R

for a range of weight factorα do
Create graph cutsCabs, Cpos, Cneg on the absolute, positive, and negative values ofS

Identify the features inCabs, Cpos, Cneg

for each vertexv in MeshM do
Count feature occurrencesNabs, Npos, Nneg in Cabs, Cpos, Cneg

end for
for each edgedo

count how many times both endpoints occur in the same region
Note: Used to generate edge weights for the later max-flow/min-cut runs

end for
end for

end for
for a range of weight factorα do

Create graph cutsCabs, Cpos, Cneg from normalized countsNabs, Npos, Nneg

Identify and merge features fromCabs, Cpos, Cneg into composite feature sets
Gabs, Gpos, Gneg

end for
MergeGneg andGpos into Gabs to create the Master Feature SetG

We also considered functions based on the Gaussian curvature component of the
curvature map, but given a suitable threshold, the mean curvature function gave the
most consistent identification of the features in our test cases.

Although the local shape property often highlights the expected features, finding an
appropriate threshold requires manual adjustment, and theresults still depend on the
curvature map radiusR. In addition, no single threshold could extract both the positive
curvature features (peak and ridge) and the negative curvature features (pit and valley).
These factors motivated our search for an improved feature detection approach.

3.2 Multi-Scale Algorithm

Combining our local shape property with the min-cut/max-flow graph cutting tech-
nique [25] creates a multi-scale approach for feature detection as presented in Algo-
rithm 1. Varying the curvature map radiusR detects features at different scales, while
increasing the weights by a scale factorα detects less prominent features.

Ranges for these parameters are discussed in [2]. For our examples, we use8 Kmap

radii cross10 scale factors, resulting in80 graph cuts each for the absolute value, pos-
itive, and negative of the shape property, plus30 in the second step, for a total of270
graph cuts. Fortunately, the graph cut algorithm is very efficient, with the270 graph cuts
on a 10,000 vertex mesh taking less than 40 seconds on a 2.8GHzPentium 4 processor.

Re-running the graph cut algorithm on the occurrence count maintains focus on the
strongest features. Once we have created the graph cut, we form features from contigu-
ous groups of vertices in the feature set of the graph cut. Forcombining sets of features,



Fig. 2. Test case without and with Gaussian noise added. The function and finalfeature set are
similar for the two cases, especially for the primary features.

Fig. 3. Master Feature Sets for selected bone meshes. The Ulna is challenging due to the limited
number of pronounced features and the significant difference between the scales of the features.
Similar features were detected for Cases A and B even though the resolution of the meshes is
very different. Reasonable features were also identified for the Pisiform and Capitate.

a simple greedy approach lets features grow, but without allowing neighboring features
to merge. This ensures that all of the features do not get merged into a single feature, as
might occur for a very large scale factor.

4 Results

Figure 2 shows the similar feature structures produced for asimple test surface with
and without the addition of Gaussian noise.

The features for several bone meshes are shown in Figure 3. These bones have fairly
subtle features. The feature layouts for Ulna A (View 2) and Ulna B are similar despite
significant differences in mesh resolution and being from different subjects.

Although the face scans and bunny, presented in Figure 4, produced a number of
very small features, the larger feature regions, such as thenose and eyes (face), and
ears, feet, and tail (bunny), seem to be features that could be useful for shape matching.
Also, features are ordered by strength so that the most significant features can be used
first in operations such as shape matching, and the weaker features may not be needed.



Fig. 4. Features detected for a dense face scan, coarse face scan, and theStanford bunny. The
larger features, which are also generally the strongest features, agree with the intuitive notion of
features which may be useful for matching shapes.

5 Conclusions and Future Work

We have presented a two-step multi-scale feature detectionapproach that uses a local
shape function based on theCurvature Map. It employs an efficient min-cut/max-flow
graph cutting algorithm and greedy algorithm to merge feature sets. The method is
robust with respect to noise, and consistently yields a reasonable set of features. Most
importantly, there is no user interaction or parameter tuning required.

The method could benefit from alternate algorithms for merging feature sets. The
greedy approach works fairly well, but may cause some over-segmentation, since it does
not allow two features to coalesce into one, which might be desirable in some instances.
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