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Abstract. Automatic detection of features in three-dimensional objects is a crit-
ical part of shape matching tasks such as object registration anchigongPre-
vious approaches often required some type of user interaction to fedates.
Manual selection of corresponding features and subjective detdiamiraf the

difference between objects are time consuming processes requirigh sevel

of expertise. Th&€urvature Map represents shape information for a point and
surrounding region and is robust with respect to grid resolution ant regsilar-
ity. It can be used as a measure of local surface similarity. We use¢bessure
map properties to extract feature regions of an object. To make théiseletthe

feature region less subjective, we employ a min-cut/max-flow grapdigatithm

with vertex weights derived from the curvature map property. A multiesap-

proach is used to minimize the dependence on user defined paraiétesisow
that by combining curvature maps and graph cuts in a multi-scale frarkewe

can extract meaningful features in a robust way.

ts

1 Introduction

Advances in three-dimensional (3-D) scanning capability @roviding ready access
to 3-D data. Automatic detection of features in 3-D objestsritical for tasks such
as object registration and recognition. For example, iflgng corresponding regions
between two similar surfaces is a necessary first step tosd@ment and registration
of those surfaces. A fundamental question is: What conssitatfeature? Man-made
objects often have well-defined features such as edgeseatutrés on natural shapes,
such as the wrist bones shown in Figure 1, are more subje¢tivghermore, such
shapes can have subtle variations, the importance of whighnot be obvious.

We aim to detect subtle shape features in a robust way withyagutomated pro-
cess. The types of features we expect to be useful are patkgigges, and valleys.
Important features may be of various sizes within one obj#etneed not (in fact, can-
not) detect every feature, and the features we do detect maap not be unique. We
just need to identify enough features to resolve any amtigguiluring shape matching.
It is desirable for feature detection to be consistent, sghindependent of the mesh
resolution, and relatively insensitive to noise.

Previous approaches often required some type of user atitmnao select features.
Manual selection of corresponding features and subjedttermination of the differ-
ence between objects are time consuming processes repaihigh level of expertise.
In contrast, our approach is entirely automatic.
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Fig. 1. Bones making up the human wrist. Natural objects have subtle shapgoraithat are
challenging to characterize.

1.1 Approach

In this paper we present a feature detection algorithm basgedeCurvature Map [1],
which at a point represents shape information for the paidties surrounding region.
A min-cut/max-flow graph cut algorithm, popular for imaggsentation tasks, is em-
ployed to identify features at various scales. Results fnwutiple graph cuts are com-
bined in a novel manner to produce a final feature set. A twp-stulti-scale approach
eliminates the need for user interaction, and for tuningupeaters based on a particular
application. This algorithm can extract meaningful featuin a robust way.

Section 2 focuses on related work in object recognitionufeadetection, and seg-
mentation. In Section 3 we give an overview of the algoritietails omitted due to
space constraints can be found in [2]. Results for varioapes$, and conclusions and
possible areas for future work, are presented in Sectiomsl45arespectively.

2 Reated Work

The two main areas of research related to this work are stggpegsentations or sig-
natures, and feature segmentation. Object recognitioregmondence, and registration
often rely on similarity measures to quantify the simikaot dissimilarity between ob-
jects by computing distances between shape represerstaiach as sets of points, fea-
ture vectors, histograms, signatures, or graph reprasmmaMethods that are more
applicable to 2D images rather than 3D object representatigll not be discussed
here. See [3] for a survey of methods applied to medical image

Graph representations, such as skeletons [4, 5] and neglbkution Reeb graphs [6],
like algorithms based on point sets [7, 8], can be useful fonguting similarity and
registration. But these methods are primarily global nathan local and often can be
sensitive to the distribution of the mesh points.

Signatures may be global or local, and provide a compaceseptation that re-
sults in more efficient comparison at the expense of thelitabd discriminate shape.
Methods used for shape retrieval, such as shape distnitaf@d, spin images [10], and
spherical spin images [11], tend to be global measures, andrglly provide limited
discrimination between similar shapes.



Signatures of a more local nature include statistical digea [12] and shape con-
texts [13], but the use of local point-to-point distances amgles, and sampling of
points respectively, limits the suitability of these methdor detailed shape compar-
ison. The point fingerprint [14], which defines an irregulamneasure for geodesic
circles around a point, and the surface curvature signft@ierely on high curvature
feature points. Unlike these approaches, we are lookinguiotle shape differences that
require more than signatures just at ‘interesting’ points.

Feature regions can be extracted based on critical poieék§p pits, and passes) and
associated ridge and valley lines. In [16], smoothing waglired as a preprocessing
step. Peak (pit) areas surrounded by valley (ridge) cytles provide the candidate
feature areas to be selected interactively. The unceytamto an appropriate amount
of smoothing and the narrow definition of a feature are drakbo this approach.

Volume decomposition based on topology [17] or morpholalgizols [18] provides
volumetric features rather than surface features. Sudagmentation methods, which
identify local regions of an object, have been based on the &f the curvature [19],
isosurfaces and extreme curvatures [20], and watershedsofvature function [21,
22]. Methods that identify salient features [23, 24] hawodleen developed. However,
these methods do not yield the types of features we are stéetén for shape matching.

Graph cut algorithms have been used to segment images [@3hadical datasets
[26]. They are effective at assigning the vertices of a graphither a feature (fore-
ground) or background set, based on graph properties subbk gsadient of the image
intensity. Some of these methods employ an interactive stepre the user identifies
feature and background seed points, to guide the algorithtimet objects that are to be
separated. By treating our mesh as a graph, we can applydbé gut algorithm and
identify features based on the resulting segmentation.

3 Feature Detection Method

The basic feature shapes we are looking for include the jpéakidge, and valley. The
common link between these features is the dependence ondtpeitode of the mean
curvature. The curvature map [1] provides a context for gamht that can be used to
define a local shape property to help identify these features

3.1 Local Shape Property
For a vertex, the 1-D curvature mags map(p), is defined by two curves representing
the average mean and Gaussian curvature as functions afickstrom the vertex. We

will refer to these curves ad/ean(Kmap(p)) and Gauss(Kmap(p)) respectively.
We define our local shape prope§yas

R
S(p)z/o Mean(Kmap(p))(r)dr

whereR represents the radius corresponding to the maximum fesizge



Algorithm 1 Multi-Scale Feature Detection

Read Curvature Mapi(,.q,) for Mesh M
for Kumap radiusR from Ry,in 10 Rinae 0O
ComputeS as the integral of th&,,,,, mean curvature component frdivio R
for a range of weight factat do
Create graph cut§'yss, Cpos, Creg ON the absolute, positive, and negative valueS of
Identify the features i€aps, Cpos, Creg
for each vertex in Mesh M do
Count feature occurrenc@é,ss, Npos, Nneg iN Cabs, Cpos; Creg
end for
for each edgelo
count how many times both endpoints occur in the same region
Note: Used to generate edge weights for the later max-flow/min-cut runs
end for
end for
end for
for a range of weight factar do
Create graph cutSass, Cpos, Cneg from normalized count®ass, Npos, Nneg
Identify and merge features fronCuss, Cpos,Cney into composite feature sets
Gab57 Gp057 Gneg
end for
MergeGneg andGpos iNto Gaps to create the Master Feature $ét

We also considered functions based on the Gaussian cuevedanponent of the
curvature map, but given a suitable threshold, the mearatuner function gave the
most consistent identification of the features in our tesesa

Although the local shape property often highlights the expa features, finding an
appropriate threshold requires manual adjustment, andethdts still depend on the
curvature map radiug. In addition, no single threshold could extract both theitpas
curvature features (peak and ridge) and the negative euevégatures (pit and valley).
These factors motivated our search for an improved feateiecton approach.

3.2 Multi-Scale Algorithm

Combining our local shape property with the min-cut/maxvflgraph cutting tech-
nique [25] creates a multi-scale approach for feature tieteas presented in Algo-
rithm 1. Varying the curvature map radilsdetects features at different scales, while
increasing the weights by a scale factodetects less prominent features.

Ranges for these parameters are discussed in [2]. For ompdes, we us8 K,
radii crossl0 scale factors, resulting i80 graph cuts each for the absolute value, pos-
itive, and negative of the shape property, pddsn the second step, for a total 270
graph cuts. Fortunately, the graph cut algorithm is vergieffit, with the270 graph cuts
on a 10,000 vertex mesh taking less than 40 seconds on a 2.B&ifizm 4 processor.

Re-running the graph cut algorithm on the occurrence coamtains focus on the
strongest features. Once we have created the graph cutrmddatures from contigu-
ous groups of vertices in the feature set of the graph cutcémbining sets of features,
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Fig. 2. Test case without and with Gaussian noise added. The function andefatate set are
similar for the two cases, especially for the primary features.
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Fig. 3. Master Feature Sets for selected bone meshes. The Ulna is challengitgttie limited
number of pronounced features and the significant difference battie scales of the features.
Similar features were detected for Cases A and B even though the resddfitioe meshes is
very different. Reasonable features were also identified for the Ris#iod Capitate.

a simple greedy approach lets features grow, but withootvidlg neighboring features
to merge. This ensures that all of the features do not getedergo a single feature, as
might occur for a very large scale factor.

4 Results

Figure 2 shows the similar feature structures produced f&imgle test surface with
and without the addition of Gaussian noise.

The features for several bone meshes are shown in Figuree3eones have fairly
subtle features. The feature layouts for Ulna A (View 2) aaid B are similar despite
significant differences in mesh resolution and being froffedint subjects.

Although the face scans and bunny, presented in Figure dupseal a number of
very small features, the larger feature regions, such asdke and eyes (face), and
ears, feet, and tail (bunny), seem to be features that ceulséful for shape matching.
Also, features are ordered by strength so that the mostfisigni features can be used
first in operations such as shape matching, and the weakerdeanay not be needed.
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Fig. 4. Features detected for a dense face scan, coarse face scan, &tdrfioed bunny. The
larger features, which are also generally the strongest featureg w@gh the intuitive notion of
features which may be useful for matching shapes.

5 Conclusions and Future Work

We have presented a two-step multi-scale feature deteatiproach that uses a local
shape function based on tieirvature Map. It employs an efficient min-cut/max-flow
graph cutting algorithm and greedy algorithm to merge feagets. The method is
robust with respect to noise, and consistently yields somgtde set of features. Most
importantly, there is no user interaction or parametemtgmequired.

The method could benefit from alternate algorithms for meydeature sets. The
greedy approach works fairly well, but may cause some osgmentation, since it does
not allow two features to coalesce into one, which might tséreble in some instances.
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