
Statistical Analysis of Manual Segmentations of
Structures in Medical Images

Sebastian Kurtek§, Jingyong Su∗, Cindy Grimm⋄,
Michelle Vaughan†, Ross Sowell‡, Anuj Srivastava∗

§Department of Statistics, The Ohio State University
∗Department of Statistics, Florida State University

⋄School of Mechanical, Industrial & Manufacturing Engineering, Oregon State
University

†Department of Computer Science and Engineering, Washington University in St. Louis
‡Department of Computer Science, Cornell College

Abstract

The problem of extracting anatomical structures from medical images is both very im-
portant and difficult. In this paper we are motivated by a new paradigm in medical image
segmentation, termed Citizen Science, which involves a volunteer effort from multiple, pos-
sibly non-expert, human participants. These contributors observe 2D images and generate
their estimates of anatomical boundaries in the form of planar closed curves. The challenge,
of course, is to combine these different estimates in a coherent fashion and to develop an
overall estimate of the underlying structure. Treating these curves as random samples, we
use statistical shape theory to generate joint inferences and analyze this data generated by
the citizen scientists. The specific goals in this analysis are: (1) to find a robust estimate
of the representative curve that provides an overall segmentation, (2) to quantify the level
of agreement between segmentations, both globally (full contours) and locally (parts of
contours), and (3) to automatically detect outliers and help reduce their influence in the
estimation. We demonstrate these ideas using a number of artificial examples and real ap-
plications in medical imaging, and summarize their potential use in future scenarios.

Key words: medical imaging, segmentation uncertainty, non-expert image segmentation,
statistical analysis of planar curves

1 Introduction

Segmentation of medical images to extract anatomical structures is arguably the
most important problem in medical image analysis. A variety of techniques rang-
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ing from variational methods to statistical methods to fuzzy logic have been ap-
plied to this problem but a general solution still remains elusive. The difficulty lies
in capturing the vast observed variability, in the form of pixel values and anatom-
ical shapes, into appropriate objective functions that enable high-quality segmen-
tations. This is further compounded by low resolution, high noise and blurriness
associated with common medical imaging modalities. The segmentation perfor-
mance achieved by trained humans – physicians, clinicians, technicians, etc. – has
been very difficult to match by automated systems. Since manual segmentations by
skilled practitioners are generally expensive and the amount of imaging data being
generated far out-paces the experts’ availability, it is not practical to rely on these
trained personnel for all our segmentation needs.

There are several directions for addressing this gap between the need and the avail-
able expertise. Firstly, motivated by the success of manual segmentations by trained
experts, an important focus of current research in segmentation has been in training
machine learning algorithms to improve their performance. A similar idea has been
to develop structured prior models on shapes of interest and perform Bayesian seg-
mentations – segmentations guided by prior knowledge of statistical shape variabil-
ity associated with anatomical structures to be segmented. A second, completely
different paradigm is to involve humans, albeit non-experts, who can volunteer
their time and effort in segmenting medical images. This approach is part of a
larger effort involving public participation in scientific data analysis. It is this sec-
ond direction that motivates the methods presented in this paper. The last decade
has seen a tremendous increase in what has been termed Citizen Science - non-
experts helping scientists collect and/or analyze data. These projects range from
Galaxy Zoo, where non-experts help classify galaxies [1], to Fold-It, where peo-
ple help fold proteins [2], to measuring trees and counting birds in nests (Cornell
Lab of Ornithology) [3]. These projects take advantage of human perceptual abil-
ities and intuitions about shape (Galaxy Zoo/Fold-It) and the ability of volunteers
to take measurements over a large spatial extent. We are currently trying to build
the foundation for Citizen Science projects that further exploit the growth of digital
imaging, both to support volunteers annotating 2D and 3D structures in imagery,
and in building tools to allow volunteers to capture calibrated imagery to support
more quantitative measurements. We believe these tools may support a diverse set
of Citizen Science projects. This paper is about analyzing data arising from multiple
manual segmentations of 3D medical image data, but could be applied to 2D photo-
graph segmentations as well (e.g. finding birds, trees or cars in a scene). Shown in
Fig. 1 is an illustration of a manual segmentation of the liver. The segmentation is
performed using multiple oblique and parallel image slices and the resulting two-
dimensional curves can be used for full three-dimensional surface reconstruction.

One challenge any data collection and analysis project faces is data verification and
validation. This is particularly true in Citizen Science projects, where the partici-
pants can come from a wide variety of backgrounds and skill sets. To date, these
projects have largely relied on carefully constructed training tutorials along with

2



(a) (b) (c) (d)

Fig. 1. Illustrations of manual segmentations of the liver in CT images. (a) 2D contour
segmented from a planar image. (b) Contours segmented from different imaging planes. (c)
Reconstructed surface imposed on the image. (d) Segmented surface.

simple statistics to filter out incorrect data (be it malicious or unintentional). Sim-
ple statistics work well in the case of category labels (e.g. Galaxy Zoo or bird
counting) because any given dataset is viewed by multiple people and each person
marks multiple datasets. This provides fairly reliable statistics for both the datasets
and reliability data on the individuals marking the datasets.

Fig. 2. 2D CT image with a zoom-in on an area where the boundary of the brainstem
is partly visible. Five expert segmentations with the one shown in the image in red. The
contrast of CT images is very low making the segmentation problem difficult.

We would like to extend the same statistical approach to support Citizen Science
projects where the volunteers contribute contour data rather than category labels.
An example of such data (brainstem) is provided in Fig. 2. We show a 2D CT
image with an example segmentation, a zoom-in on part of the image where the
boundary of the brainstem is partly visible, and five expert segmentations that form
the raw data for techniques developed in this paper. In particular, we would like
to compute sample statistics for multiple contours that let us answer the following
specific questions about the data:

(1) What is the mean or median contour? This helps filter out small noise and
discrepancies in any individual person’s contour.

(2) What is the magnitude of the standard deviation of a set of contours? This
provides a measure of confidence for the segmentations.

(3) Is a contour an outlier?
(4) What is the average distance – under a shape metric – of an individual’s con-

tours from the average contour?
(5) Do the segmentations follow a Gaussian distribution or is the data better de-
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scribed by a mixture of Gaussian distributions? (This happens quite often
when there is more than one interpretation of the instructions. For instance,
one group might contour an inner wall, while the other group contours an
outer wall.)

In addition to answering the above questions, we are interested in providing the sci-
entists (in this case physicians) with visualization tools that will help them analyze
both inter and intra variation in their datasets, and to provide confidence analysis
on their reconstructions. To this end, we provide visualizations of the major modes
of variation, and their magnitudes, which provide some estimate of the reliability
of different segments of the contour. It is important to note that these measures of
confidence or reliability do not necessarily correlate with segmentation accuracy,
but rather just consistency.

Historically, the problem of shape analysis of curves has been studied with a variety
of different mathematical representations of curves. These representations include
sample points or landmarks [4–6], level sets [7], deformable templates [8], medial
axes [9,10], algebraic invariants, and others. However, the most natural represen-
tation – a parameterized curve – is relatively infrequent. The difficulty in studying
shapes of parameterized curves lies in the parameterization variability: a curve can
be re-parameterized in infinitely many ways but still have the same shape. Davies
et al. [11,12] use landmark models and compute optimal re-parameterizations us-
ing a minimum description length (MDL) type energy. Although such models have
proven very useful in medical image analysis and have good specificity, general-
izability and compactness (as compared to manually selected landmarks and arc-
length parameterization), the method used to compute them has three main limi-
tations. First, the optimization problem is defined in terms of ensembles and thus
the distance between any two shapes depends on the other shapes in the ensemble.
This contrasts the standard mathematical definition of a distance between objects.
Second, the MDL energy does not preserve distances between shapes when they
are re-parameterized in the same way. Intuitively, the shape metrics and statistical
analysis should not change with a change in the parameterization, but rather only
with a change in shape. Finally, the MDL driven optimization problem requires a
pre-selection of a template, which can be rather arbitrary and choosing different
templates may lead to different solutions.

An emerging body of work has proposed using an algebraic approach to han-
dle the problem of parameterization. In this approach, one unifies all possible re-
parameterizations of a curve by forming equivalence relations, and each shape is
denoted uniquely by an equivalence class. Shape metrics are defined and computed
between equivalence classes, rather than individual curves. A very important ad-
vantage of this framework is that the process of comparing any two shapes, i.e.
two equivalence classes, involves finding optimal registrations between the corre-
sponding curves. (Note that the registration of points along curves corresponds to
re-parameterizations of curves.) Thus, this framework, termed elastic shape anal-
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ysis, leads to a simultaneous registration and comparison of shapes of curves, un-
der a single metric, and to a principled approach to shape analysis. Notably, the
methods involving landmarks, level sets, medial axes, and others, do not provide
this ability to simultaneously register and analyze shapes. Several papers, including
[13–15], have utilized an elastic framework, but we will use the approach presented
in [16,17] for this paper. An important advantage of this approach is that amongst
all methods for elastic shape analysis of contours, this is the only one so far that
extends to contours in higher dimensions.

Thus, the main contributions of this work are:

(1) The application of elastic analysis to modeling contour segmentation uncer-
tainty in medical images.

(2) A method for visualization of segmentation reliability based on principal com-
ponent analysis.

(3) Extension of shape analysis methods presented in [16,17] that enables one to
model rotation, scale and position in addition to shape.

(4) Definition and computation of the elastic median based on a general algorithm
presented in [18].

(5) A formal statistical procedure to identify outliers in datasets based on elastic
distances from the median.

The rest of this paper is organized as follows. In Section 2, we summarize a mathe-
matical/statistical framework presented in past papers, such as [17], and adapt these
tools for use in the current problem. Specifically, we introduce an algorithm for es-
timating the sample median in the space of contours and use that median estimate
for studying dominant modes of data variability. Experimental results involving
brainstem and prostate images are presented in Section 3, and the paper concludes
with a short summary in Section 4.

2 Mathematical Framework

The basic problem we face requires a technique for statistical analysis of planar,
closed contours. There are several theories available for this task. In this section
we summarize a recent approach for elastic analysis of contours that is particularly
attractive for the current problem.

2.1 Elastic Analysis of Curves

Let a parameterized planar, closed curve be denoted as β(t) ∈ R2, where t is the
parameter. Since the curve is closed, it is more natural to parameterize it using the
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domain S1, instead of an interval, since there are no natural end points on a circle
to match the two end points on an interval. There are several possibilities for math-
ematically representing β. One can simply use the x and y coordinate functions of
β, as shown in Fig. 3(b). Another possibility is to parameterize β using arc-length
and compute the angle β̇ makes with the x axis, as shown in (c). Finally, one can
take the derivative of this previous angle function to obtain the curvature function,
shown in (d). Although arc-length parameterization (with fixed seed placement)
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Fig. 3. (a) A simple closed curve β with the starting point in red, (b) the two coordinate
functions x and y plotted against the arc-length, (c) the angle function θ, and (d) the curva-
ture function κ.

removes the variability associated with the parameterization of curves, it suffers
from the problems of suboptimal registration due to a linear registration of points
across curves. It is more natural to include arbitrary parameterizations of curves in
the analysis, and to seek optimal re-parameterizations during pairwise matching of
curves. This allows for the possibility of nonlinear registrations of points, an aspect
that is central to elastic shape analysis.

Define the group of re-parameterization functions as:

Γ = {γ : S1 → S1|γ is an orientation-preserving diffeomorphism} .

The re-parameterization of a curve β, termed the action of Γ on the space of curves,
is given by composition, (β, γ) = β ◦ γ. One also needs a metric for comparing
shapes of curves and the Euclidean metric is the most common choice in the litera-
ture. A major problem in methods that use Euclidean distances to compare shapes
is that ∥β1 − β2∥ ̸= ∥β1 ◦ γ − β2 ◦ γ∥, for a general γ ∈ Γ, where ∥ · ∥ is the L2

metric for functions on S1. This means that a comparison of two curves depends
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on their parameterizations! A solution suggested by Srivastava et al. [16,19,17] is
to use a new mathematical representation of curves, called the square-root veloc-
ity function (SRVF), given by q(t) ≡ β̇(t)√

∥β̇(t)∥
. If a curve β is re-parameterized to

β ◦ γ, then its SRVF changes from q to (q ◦ γ)
√
γ̇; we will use the notation (q, γ)

to denote the new SRVF. One of the reasons for using this representation is that
∥q1 − q2∥ = ∥(q1, γ)− (q2, γ)∥, for all γ ∈ Γ.

In the case where the curve is closed, the corresponding SRVF satisfies the condi-
tion

∫
S1 q(t)∥q(t)∥dt = 0. Thus, the space of all planar, closed curves, represented

by their SRVFs, is given by C = {q : S1 → R2|
∫
S1 q(t)∥q(t)∥dt = 0} . C is

a nonlinear manifold because of the closure condition. In a general shape analy-
sis framework one often removes the variability due to scale, rotation and position
of the curves, but in this work these quantities are informative and are thus in-
cluded in the analysis. The position variable is, unfortunately, lost in the SRVF
representation, since it is based on the derivative β̇. We reinstate it in the analysis
as a separate variable as described in Sec. 2.2. C is a Riemannian manifold with
the standard L2 metric, ⟨v1, v2⟩ =

∫
S1 ⟨v1(t), v2(t)⟩ dt , where the inner product

in the integrand is the standard Euclidean inner product in R2. The task of com-
puting geodesic paths between any two elements q1, q2 ∈ C is accomplished nu-
merically, using an algorithm called the path straightening algorithm, introduced
first in [20] but adapted to the SRVF representation in [17]. This algorithm ini-
tializes a path in C connecting q1 and q2, and iteratively “straightens” it until it
becomes a geodesic. Let α : [0, 1] ∈ C denote the resulting geodesic path. Then,
the length of this geodesic path provides a geodesic distance between q1 and q2 in
C: dc(q1, q2) = L[α] =

∫ 1
0 (⟨α̇(τ), α̇(τ)⟩)1/2d τ .

Curves that are within a re-parameterization of each other result in different el-
ements of C. The unification of such curves is performed using an equivalence
relation under the re-parameterization group action. That is, for all elements in C
that denote re-parameterizations of the same curve, we put them in the same equiv-
alence class given by [q] = closure{(q ◦ γ)

√
γ̇|γ ∈ Γ} . Each such equivalence

class [q] is associated with a shape uniquely and vice versa. The set of all these
equivalence classes is a quotient space and is denoted by S. The distance dc can be
used to define a distance on S according to ds([q1], [q2]) = infγ∈Γ dc(q1, (q2, γ)) =
infγ∈Γ dc((q1, γ), q2) . This minimization is performed in practice by sampling each
curve with some large number of points and then applying dynamic programming
with an additional seed search.

2.2 Statistical Summaries

An important part in our analysis of contours is generating their statistical sum-
maries – in the form of means and covariances – and using these sample statistics
to analyze contours. With the possibilities of bad segmentations in mind, we also
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want the statistical summaries to be robust to outliers. Specifically, we are interested
in a robust estimation of a representative contour using the concept of a median.
Next, we provide the definition and algorithms to compute statistical summaries of
closed, planar curves in the form of a mean, median and covariance. Furthermore,
we provide a simple yet effective procedure for removal of outliers.

Mean Estimation: Once we have defined a distance ds on S , the mean can be de-
fined as follows. Let β1, β2, . . . , βn denote a set of given contours and q1, q2, . . . , qn
be the corresponding SRVFs. Then, the Karcher (or Frechet) mean curve (actually
an equivalence class of curves) is [q̄] = argmin[q]∈S

∑n
i=1 ds([q], [qi])

2. A gradient-
based approach for finding this mean is given in several places [21,4], and is re-
peated here for convenience as Algorithm 1. The algorithms for computing the
exponential map and its inverse – exp and exp−1 – are similar to the technique for
finding geodesics and are presented in [17].
Algorithm 1 (Karcher Mean): Let q̄0 be an initial estimate of the Karcher mean.
Set j = 0 and ϵ1, ϵ2 to be small positive values.
(1) For each i = 1, . . . , n, compute vi = exp−1

q̄j
(qi).

(2) Compute the average direction v̄ = (1/n)
∑n

i=1 vi.
(3) If ∥v̄∥ < ϵ1, then stop. Else, update using q̄j+1 = expq̄j

(ϵ2v̄).
(4) Set j = j + 1 and return to Step 1.

The main problem with the mean estimator is that it is susceptible to noise, espe-
cially outliers. To handle that problem, one often uses the median value instead.
Next, we introduce the concept of a median estimator for a collection of contours
under the framework of elastic analysis.

Median Estimation: Again, let β1, β2, . . . , βn denote a set of given contours and
q1, q2, . . . , qn be the corresponding SRVFs. Then, the median curve (again an equiv-
alence class of curves) is [q̃] = argmin[q]∈S

∑n
i=1 ds([q], [qi]). A gradient-based ap-

proach for finding the geometric median on general Riemannian manifolds is given
in [18]. A version of this procedure particularized to our framework is given as
Algorithm 2. The only difference here from the mean algorithm is in the weights
applied to the shooting vectors vi to obtain the weighted average ṽ. It is important
to note that in some cases the mean and median algorithms may converge to a lo-
cal solution. Also, in both algorithms we set ϵ1 to 1% of the initial gradient and
ϵ2 = 0.3. Once we have a median contour we can address the problem of outlier
detection.
Algorithm 2 (Median): Let q̃0 be an initial estimate of the median. Set j = 0 and
ϵ1, ϵ2 to be small positive values.
(1) For each i = 1, . . . , n, compute vi = exp−1

q̃j
(qi).

(2) For each i = 1, . . . , n, compute di = ds(q̃j, qi).
(3) Compute the update direction ṽ =

∑n
i=1(vi/di)(

∑n
i=1 1/di)

−1.
(4) If ∥ṽ∥ < ϵ1, then stop. Else, update using q̃j+1 = expq̃j

(ϵ2ṽ).
(5) Set j = j + 1 and return to Step 1.

Outlier Detection: We will take a distance-based approach to outlier detection. For
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this purpose we will utilize the median rather than the mean because it is a more ro-
bust estimate in the presence of outliers. Given the sample median of the data, we
proceed by computing the geodesic distances between the estimated median and
each of the curves in the data (ds([q̃], [qi]), i = 1, . . . , n). Using these distances we
can compute the quartiles (Q1, Q3) and the interquartile range (IQR = Q3 − Q1)
and label observations corresponding to distances that are greater than Q3 + kIQR
as outliers. The choice of this cutoff is based on a pre-determined expected proba-
bility of type one error, and can be adjusted for different desired error probabilities
by varying k. For the purpose of this paper, we use the standard k = 1.5.

Covariance Estimation and Random Sampling: In order to estimate the covari-
ance structure of our data we will again utilize the estimated median rather than
the mean. The covariance can be estimated with respect to any point on a Rie-
mannian manifold but since we argue that the median provides a robust estimate
of the center of mass of the data, that is the point we choose [22]. The evalua-
tion of the covariance around the mean using elastic analysis has been previously
discussed in the context of shapes of closed curves [23,17], 3D open curves [24]
and surfaces [25]. The general computation of the covariance around the median
is as follows. Let vi = exp−1

q̃ (qi), i = 1, 2, . . . , n, vi ∈ Tq̃(S). Then, the co-
variance kernel can be defined as a function Kq : [0, 1] × [0, 1] → R given by
Kq(ω, τ) = (1/(n − 1))

∑n
i=1 ⟨vi(ω), vi(τ)⟩. In practice, since the curves have to

be sampled with a finite number of points, say m, the resulting covariance matrices
are finite-dimensional. Often the observation size n is much less than m and, con-
sequently, n controls the degree of variability in the stochastic model. In the case of
learning statistical models from the observations, one can reach an efficient basis
for Tq̃(S) using the traditional principal component analysis (PCA) as follows. Let
V ∈ R2m×n be the observed tangent data matrix with n observations and m sample
points in R2 on each tangent. Let K ∈ R2m×2m be the Karcher covariance matrix
and let K = UΣUT be its SVD. The submatrix formed by the first r columns of
U , call it Ũ , span the principal subspace of the observed data and provide the ob-
servations of the principal coefficients as C = ŨTV ∈ Rr×2m. We can validate
the computed models through random sampling. This can be done using a wrapped
Gaussian distribution as follows. A multivariate Gaussian model for a tangent vec-
tor re-arranged as a long vector v ∈ R2m is given by v =

∑n
i=1 zi

√
ΣiiUi, where

zi
iid∼ N(0, 1) and Σii is the variance of the ith principal component. One can re-

structure the elements of v to form a matrix of size R2×m and obtain a random
SRVF using q = q̃+ v. Finally, this SRVF can be mapped to a parameterized curve
using integration.

Position Variability: One issue that we encounter in our framework is that the
SRVF representation automatically removes the translation variability of the given
contours (see the definition of SRVF given earlier). In order to include it in the
analysis, we treat it separately by first computing the mean position of the given
contours and then performing a joint computation of the covariance (including the
contour information and an additional translation vector). This gives us a natural
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Fig. 4. Simulated dataset. Mean (blue) and median (red) estimation in the presence of out-
liers. Gradient of the energy with respect to number of iterations (blue=mean, red=median).

way of including translation in summarizing the variability of our data using PCA.
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Fig. 5. Covariance structure and Gaussian random samples for a dataset of 20 hammers
(left=elastic analysis, right=arc-length analysis).
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Fig. 6. Top: Example reconstructions using the first five PCs (black=original curve,
blue=elastic analysis, red=arc-length analysis). Average leave-one-out distances between
true and reconstructed curves as a function of the number of PCs used (blue=elastic analysis
and ds, red=arc-length analysis and ds, black=arc-length analysis and dc), for the hammer
data (a). Variance of each principal component computed using elastic analysis (blue) and
arc-length analysis (red) for the hammer example (b) and the heart example (c).

2.3 Illustration of the Framework

In this section we present multiple artificial examples to showcase the methods
described in this paper. Each example presents a different type of result that em-
phasizes part of the described methodology. In most of these examples we compare
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Fig. 7. Simulated dataset. (a) Estimated elastic mean (blue) and median (red), ar-
c-length mean (black) and median (green). (b) Gradient of the energy (blue=elastic mean,
red=elastic median, black=arc-length mean, green=arc-length median). (c) Histogram of
distances from the median to the given data (red indicates the outliers).
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Elastic Shape Analysis
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Fig. 8. Covariance structure in the data displayed using the first three principal components
(top=elastic analysis, bottom=arc-length analysis).

the generated models to those computed using arc-length parameterization while
removing the seed variability (using SRVFs).

Mean and Median Comparison: We begin with an example that showcases the
robustness of the median estimation compared to the Karcher mean in the presence
of clear outliers. In Fig. 4, we display ten contours that come from the MPEG 7
database; the first five come from the same class, while the next five are outliers.
We performed the mean and median estimation six times, first using the first five
curves with no outliers, second using the first five curves with one outlier (curve
six), then with two outliers (curves six and seven), etc. We expect the estimated
median to be more robust to outliers than the mean. We see a clear deterioration
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of the shape of the estimated Karcher mean (blue) as we increase the number of
outliers in the data. The median contour (red) is a much better estimate, although it
also begins to deteriorate when the number of outliers becomes equal to the number
of curves coming from the same class.

100 120 140 160 180

20

40

60

(a) (b)

Fig. 9. (a) Boxplots of elastic distances to the median for all medical image examples (with
Ex. 9 highlighted in green). (b) Data in Ex. 9 with the outlier highlighted in red.

Statistical Modeling, Example 1: In this example we would like to address the
compactness, generalizablity and specificity of our models. For this purpose, we
use a dataset of 20 hammer contours (from MPEG 7). For the sake of brevity we
do not display the original dataset. It is important to note that in this example we
remove the rotation variability of the data (in a pair-wise manner using Procrustes
alignment). First, in Fig. 5, we display the first three modes of variation (within 2
standard deviations around the median drawn in red) in the computed models for
both elastic and arc-length analysis as well as random samples from the Gaussian
distribution. The shown elastic analysis principal directions of variation represent
the given data well and thus the computed models appear to have good specificity.
This can also be observed in the generated random samples, which are all valid.
These properties are not true in the case of arc-length analysis. In fact, one of the
random curves has self-crossings representing an invalid instance. Next, we want
to quantify the generalizability of our models using leave-one-out reconstructions
of the given data. For each of the curves in the data we compute its reconstruction
with a certain number of PCs and compare it to the true curve using ds defined
in Section 2.1. In Fig. 6(a) we plot the distances (averaged over all curves in the
data) as a function of the number of PCs used for reconstruction. The blue curve
represents elastic analysis and the red one represents arc-length analysis. We note
that the elastic models have significantly better generalizability than the arc-length
ones. For each number of PCs we also performed a paired t-test at the 0.05 signif-
icance level, which rejected the null hypothesis that the difference between mean
distances generated by the two methods is zero. In addition, for arc-length analy-
sis, we computed the same result using dc (also defined in Section 2.1). We plot
this result in black in the same figure. As expected, these average distances are sig-
nificantly larger than those shown in red. Additionally, we provide five qualitative
reconstruction results where we plot the true curve in black, the elastic reconstruc-
tion in blue and the arc-length reconstruction in red. Finally, in Fig. 6(b), we plot the
variance of each PC (elastic=blue, arc-length=red). We note that the elastic models
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are much more compact than the arc-length ones.

Ex. Data Mean/Median
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Fig. 10. Mean and median for five expert segmentations of the same brainstem structure
using four oblique views.

Statistical Modeling, Example 2: In Figs. 7 and 8, we display results of using
the above described statistical modeling techniques to analyze artificial heart con-
tours (from MPEG 7). In this dataset, we have included three clear outliers to test
whether our method can detect them. We began by computing the elastic mean
(blue) and median (red), and the arc-length mean (black) and median (green) of the
data. Again, we see that the medians provide a more robust statistical summary of
the data, although the differences here are smaller due to an overwhelming number
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Covariance Structure
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(d) Brainstem Oblique View 4

Fig. 11. Estimated covariance (in the form of principal components) for five expert seg-
mentations of the same brainstem structure using four oblique views.

of inliers in the data. The difference here is mainly seen in the size of the estimate.
The means are always smaller than the medians, which reflects the difference in
scale of the inliers and the outliers. Furthermore, the arc-length mean and median
are smaller than the elastic ones due to additional averaging out of features. The
distance based outlier cutoff in this example is 0.5863 and we identified three clear
outlying observations, corresponding to curves 21, 22 and 23. We removed these
outliers from the data and computed the covariance structure using the re-estimated
medians. It is important to note that after re-estimating the median and checking
for outliers again, none of the contours were flagged. We display the resulting prin-
cipal components as vector fields on the median curve (these are scaled according
to the standard deviation of each principal component). The corresponding mag-
nitude of each vector is also displayed using colors, where red areas correspond
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to higher variability in the given data. We see that the main variation, computed
using elastic analysis, matches the variability observed in the original data (overall
shape, indent at top of the heart, indents on the sides of the heart). This implies that
our models are good at capturing the underlying data structure. On the other hand,
when arc-length analysis is used this trend is not as clear. Also, the main varia-
tion accounted for by PC1 corresponds to a nearly tangential vector field along the
boundary of the median heart. This mainly represents a misalignment of points, and
can cloud the overall interpretation of the model. Also, as shown in Fig. 6(c), the
variance of PCs computed using elastic analysis (blue, cumulative variance=9.80)
is much lower than that computed using arc-length analysis (red, cumulative vari-
ance=22.72) suggesting a more compact model.

Fig. 12. Zoom-in on specific contour areas to highlight the appropriateness of elastic models
for examples in Figs. 10(a) and 13(a).

3 Experimental Results on Medical Images

In this section we display examples of elastic statistical models computed for real
segmentation data. The data used here comes from oblique slices of images of the
brainstem and prostate, and a few parallel image slices of the same anatomical
structures. In some examples we also compare expert segmentations to those per-
formed by non-experts. In each example, we estimate both the mean and median of
the manual segmentations. We also compute the covariance structure at the median.
In computing these models, we first consider the outlier detection problem. Fig. 9
shows the boxplots of elastic distances to the median for each of the 12 presented
examples. As can be seen, we identified an outlier in the non-expert segmentations
in Ex. 9. This outlier was removed from the data before computing the elastic mod-
els.

In many of the presented examples we note that the median is, as stated earlier, a
more robust estimate of the center of mass of the data than the mean. We also see
that the computed models efficiently summarize the given data and that in most
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Ex. Data Mean/Median
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Fig. 13. Mean and median for five expert segmentations of structures coming from four
different images.

cases only two principal components can account for most of the variation. The
principal components, which represent the covariance structure we estimated are
displayed as vector fields on the median curve. One important fact to note here
is that we are only displaying the positive direction (median+PC) and the vectors
were scaled according to one standard deviation from the median. We also pro-
vide a corresponding magnitude plot for each of the principal components. These
visualizations can be used to identify areas on the segmented curves that the seg-
menters were unsure about (red colors correspond to more uncertainty/variability).
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Covariance Structure
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Fig. 14. Estimated covariance (in the form of principal components) for five expert seg-
mentations of structures coming from four different images.

The computed uncertainty models can later be used as additional information in
surface reconstruction from 3D images and image registration.

In the first four examples provided in Figs. 10 and 11 we consider four oblique
views of the same brainstem structure. We are interested in modeling five manual
expert segmentations for each view. We see that our estimates of the mean and me-
dian are valid representatives of the given data. In addition, the computed principal
components efficiently reflect the variability in the given segmentations. In Figs.
13 and 14, we display some additional statistical models for expert segmentations
of the brainstem and prostate structures using different oblique and parallel views.
Again, we note that the models constructed using our method describe the given
data well. In Fig. 12 we zoom-in on the segmentation variability presented in Figs.
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(a) Brainstem Oblique View 1 (b) Brainstem Oblique View 2

(c) Brainstem Oblique View 3 (d) Prostate Oblique View

Fig. 15. Example images with segmentations shown to the non-experts.

11(a) and 14(a) for improved display. We also highlight areas of the segmentations
where most variability is observed. It is clearly evident that the magnitude of the
principal components in those areas is high (marked in red), which implies that our
models are good at capturing such variability.

Finally, in Figs. 16, 17, we provide statistical models for segmentations of the brain-
stem and prostate performed by non-experts. In two of the examples we are mod-
eling ten contours. These segmentations were performed on the same images as
those shown in Figs. 10, 11(a-c) and Figs. 13, 14(a) for expert segmenters. This is
a view angle that the experts had never seen before when contouring (they always
contour on transverse slices) and they were only indirectly aware of where the slice
was [26]. In contrast, the non-experts were given three example segmentations on
a different image (same view) as references, which are displayed in Fig. 15. They
were also presented with simple instructions to look for specific anatomical cues
in the image in order to accurately delineate the structure of interest. The contours
in the example images were made by intersecting the nonparallel planes with a
surface model reconstructed from many physician-reviewed contours drawn on the
parallel cross-sections of the dataset. We notice a very interesting result in these
two models. The non-experts had lower variability in their segmentations than the
experts. We hypothesize that this trend is due to the given example segmentations.
Perhaps in some cases the non-experts were trying to emulate the given example
images by finding similar shapes in the image data.

4 Summary

We have presented a comprehensive set of methods for statistical analysis of closed,
planar contours. These methods are especially useful in what is termed Citizen Sci-
ence, where non-experts help scientists collect and analyze real world data. In our
framework, we consider modeling uncertainty of manual segmentations performed
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Ex. Data Mean/Median
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Fig. 16. Mean and median for non-expert segmentations. The corresponding statistical
models for expert segmentations are presented in Figs. 10, 11(a-c) and Figs. 13, 14(a).

on medical images. These types of statistical analyses of contours are very im-
portant in medical surface reconstruction and medical image registration. We have
provided multiple examples on simulated data in order to validate our methods.
Furthermore, we have provided results on real segmentations of the brainstem and
prostate.

In the future, we would like to explore how influential the example images shown
to non-experts are in their segmentations. We would like to design the Citizen Sci-
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Covariance Structure
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(c) Brainstem Oblique View 3
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Fig. 17. Estimated covariance for non-expert segmentations of the brainstem and prostate
structures.

ence studies such that there is an equilibrium between the non-expert segmenters’
own knowledge and the guidance provided by the example images. Furthermore,
we would like to analyze the effectiveness of different segmenters based on inter
and intra-operator variability. An interesting additional future problem is the recon-
struction of 3D objects, i.e. surfaces, using estimated 2D contours generated from
different slices of volume image data.
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